How to complete the price information in complex products

Marcello Minenna Head of the Quantitative Analysis and Financial Innovation Unit

Opinions expressed in this work are exclusively of the author and do not necessarily reflect those of Consob.

Syllabus

- Shapes and patterns of probability distributions for different financial products
- The significance of the price information as a mean of a riskneutral probability distribution
- Significance Tests
- Recovering information to supplement the price
 - Proposal 1
 - Proposal 2
 - Proposal 3
- Conclusions

Syllabus

- Shapes and patterns of probability distributions for different financial products
- The significance of the price information as a mean of a riskneutral probability distribution
- Significance Tests
- Recovering information to supplement the price
- Proposal 1
- Proposal 2
- Proposal 3
- Conclusions

Shapes and patterns of probability distributions

The analysis of implied probability distributions requires the estimate of all the relevant risk factors connected with the financial structure of each product

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Markets data are used to estimate the relevant risk factors connected with the financial structure of the product

Interest Rate Volatility Significant exposure

to credit risk

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

DEFAULTABLE

... the "fair value" of the product at the issue date is obtained,

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

TUANC

Shapes and patterns of probability distributions

VPPI PRODUCT

Interest
Rate
Volatility
Limited exposure

to Market risk

Markets data are used to estimate the relevant risk factors connected with the financial structure of the product

VPPI technique is aimed at protecting the initial value of the financial investment over a specified time horizon and obtaining possible gains by limited exposure to the equity markets.

QUANT

Shapes and patterns of probability distributions

VPPI technique is aimed at protecting the initial value of the financial investment over a specified time horizon and obtaining possible gains by limited exposure to the equity markets.

VPPI Product - simulated trajectories

VPPI Product - simulated trajectories

QUANT

Shapes and patterns of probability distributions

VPPI PRODUCT

VPPI technique is aimed at protecting the initial value of the financial investment over a specified time horizon and obtaining possible gains by limited exposure to the equity markets.

VPPI Product - simulated trajectories

Shapes and patterns of probability distributions

INDEX LINKED CERTIFICATE

Significant exposure to Market risk Markets data are used to estimate the relevant risk factors connected with the financial structure of the product

The index-linked certificate is characterised by a complex financial engineering that makes intensive use of different derivatives components. These derivatives link the performances of the product to the variability of an equity index.

QUAN

Shapes and patterns of probability distributions

The index-linked certificate is characterised by a complex financial engineering that makes intensive use of different derivatives components. These derivatives link the performances of the product to the variability of an equity index.

QUANT ELPOPE

Shapes and patterns of probability distributions

The index-linked certificate is characterised by a complex financial engineering that makes intensive use of diverse derivatives components. These derivatives link the performances of the product to the variability of an equity index.

Index linked Certificate - simulated trajectories

QUAN

Shapes and patterns of probability distributions

Syllabus

- Shapes and patterns of probability distributions for different financial products
- The significance of the price information as a mean of a riskneutral probability distribution
- Significance Tests
- Recovering information to supplement the price
 - Proposal 1
 - Proposal 2
 - Proposal 3
- Conclusions

QUANT ELIPOPE

The significance of the price information: Intuition

BOND

Fair Price at time zero is a weighted average

•

first moment of the probability distribution at expiry date

is also a weighted average

Probability distribution of the Defaultable Bond average

of the Low Risk Bor

Probability distribution of the VPPI Product

Probability distribution of the Index Linked Certificate average

EUROPE

The significance of the price information: Intuition

Working Hypothesis: The calculated fair price is the same for completely different financial structures

The significance of the price information: Intuition

Question: How much information about the original probability distribution the price will convey in each case analyzed?

The significance of the price information: Intuition

The price and the corresponding average at expiry date - in presence of

IRREGULAR distributions - qualify a partial and misleading information

Syllabus

- Shapes and patterns of probability distributions for different financial products
- The significance of the price information as a mean of a riskneutral probability distribution
- Significance Tests
- Recovering information to supplement the price
 - Proposal 1
 - Proposal 2
 - Proposal 3

Conclusions

Significance tests

information

As a weighted average, the price is strictly connected with the first moment of the probability distribution

As the literature suggests, in presence of multimodality and irregular shapes for the probability distributions, the number of moments necessary to properly describe the probability distribution increases drammatically.

- (1) Shohat, Tamarkin, 1943 American Mathematical Survey
- (2) Szego, 1959 American Mathematical Society
- (3) Totik, 2000 Journal of Analytical Mathematics
- (4) Gavriliadis, Athanassoulis, 2009 Journal of Computational and Applied Mathematics

Significance tests

Significance of the price information

Mathematical Basis to test the significance the price

In fact, having defined the following quantities:

 $(\mu_1, \mu_2, ..., \mu_{2k})$

Vector of 2k moments for the probability distribution f(x)

$$P_k(x) = \frac{1}{\sqrt{H_{2k}H_{2k-2}}}D_k(x)$$
 Christoffel Basis Polynomials

$$D_{k}(x) = \det \begin{bmatrix} \mu_{0} & \mu_{1} & \dots & \mu_{k} \\ \dots & \dots & \dots & \dots \\ \mu_{k-1} & \mu_{k} & \dots & \mu_{2k-1} \\ 1 & x & \dots & x^{k} \end{bmatrix} \quad H_{2k} = \begin{vmatrix} \mu_{0} & \dots & \mu_{k} \\ \dots & \dots & \dots \\ \mu_{k} & \dots & \mu_{2k} \end{vmatrix}$$

Significance tests

information

Mathematical Basis to test the significance of

It's possible then to define the **Christoffel function** in the form below:

$$\lambda_{k}(x) = \left[\sum_{n=0}^{k} |P_{n}(x)|^{2}\right]^{-1}$$

Provided that a closed interval [a,b] for the probability density support can be identified and that in the interval [a,b] the function f(x) is bounded, the following limit condition holds:

$$\lim_{k \to \infty} k \lambda_k(x) = \pi \sqrt{(x-a)(b-x)} \cdot f(x)$$

DEFAULTABLE

BOND

Significance tests

Significance of the price information

Mathematical Basis to test the significance of the price

For k finite, the limit condition implies that the probability function f(x) can be approximated by the following functional:

$$f\left(x\right) \approx f_{AP,k}\left(x\right) = \frac{k}{c_{o}\pi\sqrt{\left(x-a\right)\left(b-x\right)}}\lambda_{k}\left(x\right) \quad \text{$$$$$} \qquad \text{$$$Gavrilladis, Athanassoulis, 2009 - Journal of Computational and Applied Mathematics}$$

with $X \in [a,b]$. C_0 is a normalizing factor.

Significance tests

Significance of the price information Mathematical Basis to test the significance of the price information

For k finite, the limit condition implies that the probability function $f(\boldsymbol{x})$ can be approximated by the following functional:

$$f(x) \approx f_{AP,k}(x) = \frac{k}{c_0 \pi \sqrt{(x-a)(b-x)}} \lambda_k(x)$$

with $x \in [a, b]$. C_0 is a normalizing factor.

It's then immediate to apply the approximating formula for different values of k in order to test the accuracy of the approximation for the probability distributions corresponding to our different financial products

Significance tests

Bimodality High dispersion

At least 16 moments are needed in order to obtain a satisfactory approximation of the original distribution. The information content of the first moment seems very limited.

Significance tests

Significance test of the price information

LOW-RISK

Only 4 moments are sufficient in order to describe properly the original distribution. The information content of the first moment can be considered adequate.

Significance tests

12 moments describe correctly the pattern of the original distribution. The information content of the first moment needs to be integrated.

Significance tests

At least 20 moments are needed in order to obtain a satisfactory approximation of the original distribution. The information content of the first moment seems very limited.

Significance tests

distribution needs at least 4 moments even for the most regular one

Significance tests

Significance tests

Even if 4 moments are needed for a proper reconstruction of the probability distribution, the average and its related measures (IRR and price), convey sufficient information for the investor decision process CUANT

Significance tests

Significance tests

Significance tests

Significance tests

For more complex financial structures, the average progressively looses its connection with the internal rate of return of the investment, so reducing its usefulness as an effective tool for the decision process

QUANT LEPOPE

Significance tests

Syllabus

- Shapes and patterns of probability distributions for different financial products
- The significance of the price information as a mean of a risk-neutral probability distribution
- Significance Tests
- Recovering information to supplement the price

Proposal 1

- Proposal 2
- Proposal 3
- Conclusions

54

Proposal 3

Conclusions

Proposal 1: Convey to the average investor the entire

probability distribution

Proposal 2: Unbundling the information content of the price

- 63

moment of the probability distribution

Proposal 2: Unbundling the information content of the price

appreciate the impact of the costs and

the riskiness of the product

Recovering information to support the price: the unbundling table Unbundling the information content of the price COMPLEX PRODUCT DISCOUNTED Fair Value EXPECTED ... omplex Product VALUE A risk-free floater with same fair value and coupon payment dates of the complex product is defined DISCOLINTED Fair Value → EXPECTED ... (Risk-free floater) VALUE

- Shapes and patterns of probability distributions for different financial products
- The significance of the price information as a mean of a riskneutral probability distribution
- Significance Tests
- Recovering information to supplement the price
 - Proposal 1
 - Proposal 2

Proposal 3

Conclusions

Recovering information to support the price: the unbundling table

Unbundling the information content of the price

Any non-elementary return-target product can be replicated by a portfolio composed of the associated risk-free floater and of a zerovalue swap which transforms the cash flow structure of the risk-free security into the cash flow structure of the product itself, ie, denoting by $\{swap_t\}_{t \in [0,T]}$ the value process of the swap

(Frice Oribunaling)		
A	Theoretical value of the Risk-Free component	91.3
В	Theoretical value of the Risky component	5
C = A + B	Fair value	96.3
D	Costs	3.7
E = C + D	Issue price	100

A	Theoretical value of the Risk-Free component	90.1
В	Theoretical value of the Risky component	6.4
C = A + B	Fair value	96.5
D	Costs	3.5
E = C + D	Issue price	100

COMPLEX PRODUCT The additional information to be supplemented must

be easy to understand for the average investor

capture efficiently all the main statistical characteristics of the probability distribution of the product

Proposal 3: Perform a reduction in granularity by implementing a

Recovering information to support the price: the superimposition technique

The assessment of the probability of recovering at least the amount paid for the product is of great significance for the investor.

QUANT

Recovering information to support the price: the superimposition technique

It is appropriate to explore further partitions of the macro-event "the final value of the investment is higher than the issue price" by performing a direct comparison with the final values of the risk-free asset.

QUANT

Recovering information to support the price: the superimposition technique

Recovering information to support the price: the superimposition technique

Benefits of this solution:

 The <u>reduction in granularity</u> of the events determined by the partition involves only a very limited loss of information and <u>the table</u>, built by coupling for each scenario its risk-neutral probability and the associated mean value, is very easy to read;

QUANT

Recovering information to support the price: the superimposition technique

Recovering information to support the price: the superimposition technique

Benefits of this solution:

- The <u>reduction</u> in <u>granularity</u> of the events determined by the partition involves only a very limited loss of information; <u>The table</u>, built by coupling for each scenario its risk-neutral probability and the associated mean value, is very easy to read;
- 2. The <u>model risk</u> arising from the different proprietary models of the issuers has a limited impact.

QUAN EUROPE

Recovering information to support the price: the superimposition technique

Recovering information to support the price: the superimposition technique

Recovering information to support the price: the superimposition technique

be easy to understand for the average investor

capture efficiently all the main statistical characteristics of the probability distribution of the product

events that have a strong financial meaning for the investor

the partition should be done by choosing the reduction in granularity mitigates in a significant way the model risk

Proposal 3:

Perform a reduction in granularity by implementing a partition of the probability distribution

Syllabus

- Shapes and patterns of probability distributions for different financial products
- The significance of the price information as a mean of a riskneutral probability distribution
- Significance Tests
- Recovering information to supplement the price
 - Proposal 1
 - Proposal 2
 - Proposal 3
- Conclusions

Conclusions

Since there's a close one-to-one relationship between the two tables, the two sets of information can be easily coupled in an easy-to-read sheet

Conclusions

Since there's a close one-to-one relationship between the two tables, the two sets of information can be easily coupled in an easy-to-read sheet

Conclusions

Since there's a close one-to-one relationship between the two tables, the two sets of information can be easily coupled in an easy-to-read sheet

Conclusions

Since there's a close one-to-one relationship between the two tables, the two sets of information can be easily coupled in an easy-to-read sheet

