Syllabus

- Shapes and patterns of probability distributions for different structured products
- Recognizing and assessing the main drivers of complexity
- Significance Tests
- Unveiling Risk and Opportunities to Investors
- Proposal 1
- Proposal 2
- Proposal 3
- Conclusions

CONSOB \qquad -

Shapes and patterns of probability distributions

CONSOB \qquad

Shapes and patterns of probability distributions

Syllabus

- Shapes and patterns of probability distributions for different structured products
- Recognizing and assessing the main drivers of complexity
- Significance Tests
- Unveiling Risk and Opportunities to Investors
- Proposal 1
- Proposal 2
- Proposal
- Conclusions

CONSOB

Shapes and patterns of probability distributions

DEfaUITABLE

BOND | Markets data are used to estimate the relevant risk factors |
| :---: |
| connected with the financial structure of the product |

Shapes and patterns of probability distributions

Shapes and patterns of probability distributions

CONSOB \qquad $-{ }^{14}$

Shapes and patterns of probability distributions

\qquad

Shapes and patterns of probabiity distributions

Shapes and patterns of probability distributions
defaultable
Bond The final values of the product provide the probability BOND distribution of the potential returns (so-called pricing at maturity)...

CONSOB

Shapes and patterns of probability distributions

g CONSOB

Shapes and patterns of probability distributions

9 CONSOB

The index-linked certificate is characterised by a complex financial engineering that makes intensive use of different derivatives components. These derivatives link the performances
of the product to of the product to the variability of an equity index.
CONSOB

Shapes and patterns of probability distributions

CONSOB \qquad

Shapes and patterns of probability distributions

CONSOB

CONSOB

Recognizing and assessing the main drivers of complexity: Intuition

Recognizing and assessing the main drivers of complexity: Intuition

Syllabus

- Shapes and patterns of probability distributions for different structured products
- Recognizing and assessing the main drivers of complexity
- Significance Tests
- Unveiling Risk and Opportunities to Investors
- Proposal 1
- Proposal 2
- Proposal 3

$\xrightarrow{\text { Significance tests }} \underset{$| Significance |
| :--- |
| of the price |$}{ } \cdots \rightarrow \quad$| As a weighted average, the price is |
| :--- |
| strictly connected with the first |
| moment of the probability |
| distribution |

As the literature suggests, in presence of multimodality and irregular shapes for the probability distributions, the number of moments necessary to properly describe the

See:
(1) Shohat, Tamarkin, 1943 - American Mathematical Survey
(2) Szego, 1959 - American Mathematical Society
(3) Totik, 2000 - Jourral of Analyticilal
(3)
(3) Totik, 2000 - Journal of Analytical Mathematics
(4) Gavriliadis Athanassouls, yona

- Conclusions

In fact, having defined the following quantities:
$\left(\mu_{1}, \mu_{2}, \ldots, \mu_{2 k}\right) \quad$ Vector of $2 k$ moments for the probability distribution $f(x)$
$P_{k}(x)=\frac{1}{\sqrt{H_{2 k} H_{2 k-2}}} D_{k}(x) \quad$ Christoffel Basis Polynomials
where
$D_{k}(x)=\operatorname{det}\left[\begin{array}{cccc}\mu_{0} & \mu_{1} & \ldots & \mu_{k} \\ \cdots & \ldots & & \ldots \\ \mu_{k-1} & \mu_{k} & \ldots & \mu_{2 k-1} \\ 1 & x & \ldots & x^{\star}\end{array}\right] \quad H_{2 k}=\left[\left.\begin{array}{ccc}\mu_{0} & \ldots & \mu_{k} \\ \ldots & \ldots & \ldots \\ \mu_{k} & \ldots & \mu_{2 k}\end{array} \right\rvert\,\right.$
8 CONSOB \qquad $-{ }^{37}$

Significance tests

or k finite, the limit condition implies that the probability function $f(x)$ can be For k finite, the limit condition implies
approximated by the following functional:
$f(x) \approx f_{A P, k}(x)=\frac{k}{c_{0} \pi \sqrt{(x-a)(b-x)}} \lambda_{k}(x)$
with $x \in[a, b] . c_{0}$ is a normalizing factor

It's then immediate to apply the approximating formula for different values of k
in order to test the accuracy of the distributions to corresponding to our different finanaid
9. CONSOB \qquad

12 moments describe correctly the pattern of the original distribution. The information content of the first moment needs to be integrated.

Significance of the price $\cdots \rightarrow \underset{\begin{array}{c}\text { Mathematical Basis to test the } \\ \text { significance } \\ \text { information }\end{array}}{\begin{array}{l}\text { of }\end{array} \text { the }}$ price

tr's possible then to define the Christoffel function in the form below:
$\lambda_{k}(x)=\left[\sum_{n=0}^{k}\left|P_{n}(x)\right|^{2}\right]^{-1}$
Provided that a closed interval $[a, b]$ for the probability density support can be identified and that in the interval $[a, b]$ the function $f(x)$ is bounded, the following limit condition holds:

(\downarrow

$\lim _{l \rightarrow \infty} k \lambda_{k}(x)=\pi \sqrt{(x-a)(b-x)} \cdot f(x)$
4. CONSOB \qquad Significance tests
(1) Bimodality

At least 16 moments are needed in order to obtain a satisfactory approximation of the original distribution. The information content of the first moment seems very limited.

CONSOB \qquad

Significance tests

At least 20 moments are needed in order to obtain a satisfactory approximation of the original distribution. The information content of the first moment seems very limited.

For k finite, the limit condition implies that the probability function $f(x)$ can be approximated by the following functional:
$f(x) \approx f_{A P, k}(x)=\frac{k}{c_{0} \pi \sqrt{(x-a)(b-x)}} \lambda_{k}(x) \cdots \rightarrow \begin{aligned} & \text { Gaviliais. Athenassoulisp 2009- Journal of } \\ & \text { Computationana and Applied Mathematics }\end{aligned}$ with $x \in[a, b] . c_{0}$ is a normalizing facto

CONSOB \qquad -39

Significance tests

Only 4 moments are sufficient in order to describe properiy the original distribution. The information content of the first moment can be considered adequate

CONSOB

Significance tests

Probability distribution of the Defaultable Bond	Probability distribution of the Low Risk Bond	Probability distribution of the VPPI Product	Probability distribution of the Index Linked Certificate
${ }_{\text {a }}^{\text {arease }} 1$	${ }^{\text {areases }}$ ¢	${ }^{\text {averase }} \downarrow$	${ }^{\text {averase }} 1$.
STATISTCAL PROPERTIES OF THE PROBABILTYY DISTRIBUTIONS			
(\pm		\downarrow
Bimodality	Regular	Asymmetry	Multimodality
High dispersion	symmetry	kurtosis	Asymmetry
	Low dispersion		kurtosis
			High dispersion
$16 \text { moments }$ needed	4 moments needed	$\begin{gathered} 12 \text { moments } \\ \text { needed } \end{gathered}$	$20 \text { moments }$ needed
From a pure statistical point of view, a proper reconstruction of the original distribution needs at least 4 moments even for the most regular one CONSOB \qquad			

Significance tests

For more complex financial structures, the average progressively looses its connection with the internal rate of return of the
usefulness as an effective tool for the decision process

Significance tests

IRR $=2.8 \% \quad \mu_{1} \approx$ RR* T^{*} *investedCapital $=114$
CONSOB

Significance tests

$$
\text { IRR }=2.53 \% \quad \mu_{1} \neq \mid \text { RR } \mathbb{R}^{*} \mathrm{~T}^{*} \text { InvestedCapital }=112.65
$$

G CONSOB

Significance tests

Potabivy distivion		
$\stackrel{\text { arease }}{ }$	${ }^{\text {averago }}$	${ }^{\text {averaso }} 1$.
STATISTICAL PROPERTIES OF THE PROBABILTY DISTRIBUTIONS		
$\dot{\downarrow}$	$\dot{\downarrow}$	$\dot{\downarrow}$
Bimodality	Asymmetry	Multimodality
High dispersion	kurtosis	Asymmetry
		kurtosis
		High dispersion
(1) $\substack{\text { Price } \\ \text { Averee } \\ \text { Rre }}_{\substack{\text { Rre }}}$		

The price and the corresponding average and IRR at expiry date - in presence of IRREGULAR distributions g CONSOB

Significance tests
$\underbrace{\text { ! }}_{\substack{\text { Regular } \\ \text { symmetry } \\ \text { Low dispersio }}}$
\square
Eveni 4 moments are needed for a proper reconstruction of the probability distribution, the average CONSOB -

Significance tests

CONSOB

Syllabus

" Shapes and patterns of probability distributions for different structured products

- Recognizing and assessing the main drivers of complexity
- Significance Tests
- Unveiling Risk and Opportunities to Investors

- Proposal 1

- Proposal 2
- Proposal 3
- Conclusions

CONSOB \qquad $-5 s$

Unveiling Risk and Opportunities to Investors: model risk
(D) COMPLEX PRODUCT
The additional information to be supplemented must
\vdots
be easy to understand for
the average investor
to

Proposal 1: Convey to the average investor the entire 5. CONSOB probability distribution \qquad - ${ }^{56}$

Unveiling Risk and Opportunities to Investors: model risk

Syllabus

- Shapes and patterns of probability distributions for different structured products
- Recognizing and assessing the main drivers of complexity
- Significance Tests
- Unveiling Risk and Opportunities to Investors

$$
\text { - Proposal } 1
$$

- Proposal2
- Proposal 3
- Conclusions

Unveiling Risk and Opportunities to Investors: model risk

		Prosaivy distarion	
Anerse		averse	averse

MODELING CHOICES FOR THE SELECTED FINANCIAL PRODUCTS

The shape of the probability distribution of the potential returns is obviously dependent on the modelling assumptions.
c. CONSOB \qquad ${ }^{57}$

Unveiling Risk and Opportunities to Investors: model risk

thestract object not easy to handle shape of the probability by the average investors

Unveiling Risk and Opportunities to Investors: the unbundling table

g CONSOB \qquad

Proposal 1: Convey to the average investor the entire g CONSOB probability distribution

\qquad -64

Unveiling Risk and Opportunities to Investors: the unbundling table

Unveiling Risk and Opportunities to Investors: the unbundling table Any non-elementary return-target product can be replicated by a
portfolio composed of the associated risk-free floater and of a zeroportuolio composed of the associated risk-free floater and of a aero-
value swap which transforms the cash flow structure of the risk-free
security int
 by $\left\{\right.$ swap $p_{i \in l \mid 0,7,7}$ the value process of the swap

canc COSOB

Syllabus

- Shapes and patterns of probability distributions for different structured products
- Recognizing and assessing the main drivers of complexity
- Significance Tests
- Unveiling Risk and Opportunities to Investors

$$
\text { - Proposal } 1
$$

- Proposal 2
- Proposal 3
- Conclusions

Unveiling Risk and Opportunities to Investors: the superimposition technique
(1) COMPLEX PRODUCT
The additional information to be supplemented must
be easy to understand for

the average investor | capture efficiently all the main |
| :--- |
| statistical characteristics of the |
| probability distribution of the product |

Proposal 3: Perform a reduction in granularity by implementing a gCONSOB partition of the probability distribution

The assessment of the probability of recovering at least the amount paid for the
product is of great significance for the investor.

- CONSOB \qquad

It is appropriate to explore further partitions of the macro-event "the final value of the investment is higher than the issue price" by performing a direct comparison with the final values of the risk-free asset.

CONSOB \qquad

Unveiling Risk and Opportunities to Investors: the superimposition technique

Benefits of this solution

1. The reduction in granularity of the events determined by the partition involves only a very limited loss of information and the table, built by
coupling for each scenario its risk-neutral probability and the associated mean value, is very easy to read;
2. CONSOB \qquad

Unveliing Risk and Opportunities to investors: the superimposition technique $-{ }^{76}$

Unveiling Risk and Opportunities to Investors: the superimposition technique

Unveiling Risk and Opportunities to investors: the superimposition technique

$\underbrace{\substack{\text { COMPLEX } \\ \text { ProDUCT }}}$

Benefits of this solution:
The reduction in granularity of the events determined by the partition Involves only a very limited loss of information; The table, built by coupling
for each scenario its risk-neutral probability $\frac{\text { and the associated mear }}{}$ value, is very easy to read;
2. The model risk arising from the different proprietary models of the issuers has a limited impact.
CONSOB

Unveiling Risk and Opportunities to Investors: the superimposition technique

(1) COMPLEX PRODUCT

The additional information to be supplemented must
■
\checkmark be easy to understand for the average investor
$\boldsymbol{V}_{\text {statistical }}^{\text {capture }}$ eficiently all the main statistical characteristics of the

Syllabus
" Shapes and patterns of probability distributions for different structured products

- Recognizing and assessing the main drivers of complexity
- Significance Tests
- Unveiling Risk and Opportunities to Investors
- Proposal 1
. Proposal2
- Proposal3

CONSOB

- 83

Conclusions
Since there's a close one-to-one relationship between the two tables, the two sets of information can be easily coupled in an easy-to-read sheet

the reduction in granularity mitigates in a significant way the model risk
the partition should be done by choosing vents that have a strong financial
meaning for the investor (1)

Perform a reduction in granularity by implementing a
Proposal 3: $\begin{aligned} & \text { Perform a reduction in granularity by } \\ & \text { partition of the probability distribution }\end{aligned}$ \qquad

Conclusions
Since there's a close one-to-one relationship between the two tables, the two sets of information can be easily coupled in an easy-to-read sheet

