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Preliminaries

Non-equity Investment products should be classified according to their
financial characteristics and not to “labels” that are assigned by the issuer
and/or by the European regulatory framework.
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Traditional narrative
description of all possible 

risks associated with
a predefined “label”

Synthetic indicators 
robust,

objective 
and backward verifiable

Consob regulation on transparency on the risk profile of non-equity
investment products is based on synthetic indicators – defined through the
development of specific quantitative methods – in order to allow investors to
take informed investment decisions.

VS

Equity
Mutual
Funds

Liquidity
Mutual
Funds

Structured
Bond

Equity
Unit

Linked

Bond

Bond
ETF

Bond
Unit

Linked
Liquidity

ETF

Structured
ETF

RISK TARGET
PRODUCT

BENCHMARK
PRODUCT

RETURN TARGET
PRODUCT

Preliminaries

5

The key qualitative information is made objective by using a three-pillars
approach.

RETURNS RISKS INVESTMENT HORIZON

1st Pillar

Unbundling and 
Probabilistic performance 

scenarios

2nd Pillar

Synthetic risk
indicator

3rd Pillar

The recommended
Investment horizon

Preliminaries

1st Pillar 2nd Pillar 3rd Pillar
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RETURNS

RISKS

INVESTMENT HORIZON

(less than 3 years)

(medium-low)

(maximum return)

Time goal:
liquidity/investment horizon

Risk profile:
risk limit in terms of downside

Return goal:
target returns

Investor decisions as a sequential filtering problem:
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In “return target” products (e.g. corporate bonds) the connection between the
pricing at time zero and the pricing at maturity is evident, as the probability
table is a necessary step to obtain the unbundling of the price of the product
at time 0.

1st Pillar: Unbundling and Probabilistic performance scenarios

RISK TARGET
PRODUCT

BENCHMARK
PRODUCT

RETURN TARGET
PRODUCT

Fair Value
Pricing at time zero

Possible 
Outcomes

Pricing at maturity

Unbundling Returns
probability
distribution
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5 year fixed-rate bond
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1st Pillar: Unbundling and Probabilistic performance scenarios

Euribor’s simulated patterns

Product’s simulated patterns
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t (year)

The final values of the bond at the end of the 5th year provide the probability
distribution of potential returns (so-called pricing at maturity).
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1st Pillar: Unbundling and Probabilistic performance scenarios

Product’s simulated patterns

Possible 
Outcomes

Pricing at maturity
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t (year)

The final values of the bond at the end of the 5th year provide the probability
distribution of potential returns (so-called pricing at maturity).
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1st Pillar: Unbundling and Probabilistic performance scenarios

Product’s simulated patterns

Possible 
Outcomes

Pricing at maturity
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COMPLEXITY FOR RETAIL INVESTORS: The informative content of the
entire probability distribution is very complex to handle for the average
retail investor.

T=5 years

Probability distribution of the final values of the bond

1st Pillar: Unbundling and Probabilistic performance scenarios
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MODEL RISK: The shape of the probability distribution of potential returns
is obviously dependent on the model’s assumption.

T=5 years

Bond value (base 100)

Probability distribution of the final values of the bond

HW IR Model

CIR IR Model

1st Pillar: Unbundling and Probabilistic performance scenarios
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1st Pillar: Unbundling and Probabilistic performance scenarios
COMPLEXITY FOR RETAIL INVESTORS: STANDARD SOLUTION

DISCOUNTED
EXPECTED

VALUE

Probability distribution of the
final values of the bond

T Fair Value
Pricing at time zero
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1st Pillar: Unbundling and Probabilistic performance scenarios

PORTFOLIO REPLICATION PRINCIPLE

Probability distribution of 
the risk-free asset

Probability distribution of 
the risk-free asset

T

Probability distribution of 
the risky asset

Theoretical value of
the bond-like component

Risk-free asset

Theoretical value of
the derivative component

Risky asset

T

COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (1)

DISCOUNTED
EXPECTED

VALUE

Probability distribution of the
final values of the bond

T Fair Value
Pricing at time zero
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A Theoretical value of the bond-like component …

B Theoretical value of the derivative component …

C = A + B Fair value …

D Explicit costs …

E Implicit costs …

F = C + D + E Issue price 100

1st Pillar: Unbundling and Probabilistic performance scenarios

Financial investment table
(Unbundling)

COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (1)
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T=5 years

Probability distribution of the final values of the bond

It’s interesting to explore a different representation of the information
contained in the probability distribution which could be useful for the average
investor

Bond value (base 100)

1st Pillar: Unbundling and Probabilistic performance scenarios
COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (2)
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In order to provide the investor with a representation fair, easy to understand
and resilient to the model’s risk, a simple rescaling with respect to the risk-
neutral measure numeraire is presented

1st Pillar: Unbundling and Probabilistic performance scenarios

T=5 years

Probability distribution of the final values of the bond

Bond value (base 100)

COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (2)
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In order to provide the investor with a representation fair, easy to understand
and resilient to the model risk, a simple rescaling w.r.t. the risk-neutral
measure numeraire is presented

1st Pillar: Unbundling and Probabilistic performance scenarios

T=5 years

Probability distribution of the cash account (risk neutral numeraire)

Bond value (base 100)

COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (2)
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The superimposition of the product’s probability distribution with the cash
account naturally defines three different events which are effectively
meaningful for the investor.

1st Pillar: Unbundling and Probabilistic performance scenarios

T=5 years

Probability distribution of the cash account (risk neutral numeraire)

Bond value (base 100)

COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (2)
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1st Pillar: Unbundling and Probabilistic performance scenarios

T=5 years

Probability distribution of the cash account (risk neutral numeraire)

Bond value (base 100)

COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (2)

The 
performance 
is in line with
the risk-free 

asset

The 
performance 
is higher than
the risk-free 

asset

The 
performance 
is lower than 
the risk-free 

asset
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1st Pillar: Unbundling and Probabilistic performance scenarios

T=5 years

Probability distribution of the cash account (risk neutral numeraire)

Bond value (base 100)

COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (2)

The 
performance 

is positive and 
in line with

the risk-free 
asset

The 
performance 

is positive and 
higher than
the risk-free 

asset

The 
performance 

is positive and 
lower than 

the risk-free 
asset

CN0

The 
performance 
is negative
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SCENARIOS PROBABILITY MEDIAN 
VALUES

The performance is negative % €

The performance is positive but 
lower than the risk-free asset % €

The performance is positive and 
in line with the risk-free asset % €

The performance is positive and 
higher than the risk-free asset % €

1st Pillar: Unbundling and Probabilistic performance scenarios
COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (2)

Probabilistic performance scenario table
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Connection between the pricing at time zero and the 
pricing at the end of recommended investment horizon

1:1 Relationship

Table of probabilistic performance scenarios

End of the recommended investment horizon

Financial investment table

Time Zero

SCENARIOS PROBABILITY MEDIAN 
VALUES

The performance is negative % €

The performance is positive but 
lower than the risk-free asset % €

The performance is positive and 
in line with the risk-free asset % €

The performance is positive and 
higher than the risk-free asset % €

A
Theoretical value of 
the bond-like 
component

…

B
Theoretical value of
the derivative
component

…

C = A + B Fair value …

D Explicit costs …

E Implicit costs …

F = C + D + E Issue price 100

1st Pillar: Unbundling and Probabilistic performance scenarios
COMPLEXITY FOR RETAIL INVESTORS: CONSOB REGULATION (1) e (2)

25

1st Pillar: Unbundling and Probabilistic performance scenarios
MODEL RISK: CONSOB REGULATION

Heston Merton V G NIG

The model risk arising from the right to freely use the proprietary models is 
solved with the reduction in granularity of events

Many possible choices…
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Scenarios
Proba
bility

Median
Values

The 
performance is
negative

46.61
%

€
90.50

The 
performance is 
positive but 
lower than the 
risk-free asset

3.39% € 101.26

The 
performance is 
positive and in 
line with the 
risk-free asset

33.28
%

€ 112.19

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.72
%

€ 139.93

Heston Merton V G NIG

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

42.695
%

€
89.26

The 
performance is 
positive but 
lower than the 
risk-free asset

4.74% € 102.54

The 
performance is 
positive and in 
line with the 
risk-free asset

35.7% € 110.09

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.86
%

€ 142.65

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

43.91
%

€
91.25

The 
performance is 
positive but 
lower than the 
risk-free asset

5.23% € 102.1

The 
performance is 
positive and in 
line with the 
risk-free asset

36.8% € 109.24

The 
performance is 
positive and 
higher than 
the risk-free 
asset

14.06
%

€ 141.77

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

48.1%
€

93.40

The 
performance is 
positive but 
lower than the 
risk-free asset

2.6% € 101.91

The 
performance is 
positive and in 
line with the 
risk-free asset

34.28
%

€ 114.23

The 
performance is 
positive and 
higher than 
the risk-free 
asset

15.02
%

€ 142.13

1st Pillar: Unbundling and Probabilistic performance scenarios

… the following output is obtained:

MODEL RISK: CONSOB REGULATION

The results of the various models show differences between each box of less 
than 5%
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3rd Pillar: recommended investment time horizon
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2nd Pillar: Synthetic risk indicator

Volatility of the product’s simulated returns

Volatility is the most immediate risk measure and 
it has a one-to-one relationship with whatever loss measure 

(VaR, ES, etc.)

st

29

DEGREE OF RISK

Volatility of the product’s simulated returns

st

MEASUREMENT:
product’s positioning inside 
a grid of n volatility intervals

REPRESENTATION:
mapping of any volatility interval into 
a corresponding qualitative risk class

R
IS

K
R

IS
K

1,min                  1,max

Volatility Intervals

2,min                  2,max

3,min                  3,max

4,min                  4,max

5,min                  5,max

6,min                  6,max

7,min                  7,max

Very Low

Risk Classes

Low

Medium-Low

Medium

Medium-High

High

Very High

2nd Pillar: Synthetic risk indicator
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Looking for the number of intervals 
(so-called “n-tuple of risk classes”) 

allowing the best compromise between 
investors’ comprehension and 

detail of the information conveyed

Hypothesis
NUMBER OF INTERVALS SPANNED: 

5, 6 or 7

REPRESENTATION:
mapping of any volatility interval into 
a corresponding qualitative risk class

MEASUREMENT:
product’s positioning inside 
a grid of n volatility intervals

2nd Pillar: Synthetic risk indicator
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5 risk classes

6 risk classes

7 risk classes

Low
Medium-Low

Medium
Medium-High

High
Very High

Low
Medium-Low

Medium
Medium-High

High

Low
Medium-Low

Medium
Medium-High

High
Very High

Very Low

Hypothesis
NUMBER OF INTERVALS SPANNED: 

2nd Pillar: Synthetic risk indicator

32
t

Products with the same risk budget
must have the same degree of risk

2nd Pillar: Synthetic risk indicator

RISK TARGET
PRODUCT

BENCHMARK
PRODUCT

RETURN TARGET
PRODUCT
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Medium

Medium-High

Volatility intervals have to be suitably calibrated
in order to avoid wrong risk representations

2nd Pillar: Synthetic risk indicator
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2nd Pillar: Synthetic risk indicator

Medium

Medium-High

Volatility intervals have to be suitably calibrated
in order to avoid wrong risk representations
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Moreover, the optimal set of volatility intervals
has to be consistent with the principle:

+ RISK + LOSSES

VOLATILITY INTERVALS MUST HAVE 
AN INCREASING WIDTH

2nd Pillar: Synthetic risk indicator

Volatility intervals have to be suitably calibrated
in order to avoid wrong risk representations
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How to define a suitable volatility grid

Minimizing the chance for an asset manager 
of overcoming not intentionally his risk budget, 

i.e. the volatility interval
(so-called “management failure”)

2nd Pillar: Synthetic risk indicator
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The optimal set of volatility intervals for a given n-tuple
of risk classes requires to solve a stochastic NLP problem 

(i.e. minimize the chance of a “management failure”) 

2nd Pillar: Synthetic risk indicator

How to define a suitable volatility grid

Minimizing the chance for an asset manager 
of overcoming not intentionally his risk budget, 

i.e. the volatility interval
(so-called “management failure”)
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1st INTUITION

it has to be studied the behavior 
of an automatic asset manager
that has a specific risk budget,

identified by a given volatility interval 

In order to analyze the management failures, (i.e.: to
specify and solve the SNLP problem)….

2nd Pillar: Synthetic risk indicator

How to define a suitable volatility grid
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2nd INTUITION

volatility prediction intervals have to be determined,
in order to measure the ability of the automatic asset 

manager to remain within his risk budget

2nd Pillar: Synthetic risk indicator

In order to analyze the management failures, (i.e.: to
specify and solve the SNLP problem)….

How to define a suitable volatility grid

40

the optimal set of volatility intervals must allow 
a similar number of “management failures” 

to any automatic asset managers 
(despite his belonging to different  risk classes)

NO INCENTIVE TO CHOOSE A SPECIFIC CLASS

3rd INTUITION

2nd Pillar: Synthetic risk indicator

In order to analyze the management failures, (i.e.: to
specify and solve the SNLP problem)….

How to define a suitable volatility grid
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The stochastic non linear programming problem

optimal set of volatility intervals

 
1 2 1, ,

min max
n

ii n
mf

      

Let           be the number of volatility intervals 
(so-called “n-tuple of risk classes”)

Then, the optimization problem is twofold:

1. find the optimal number of intervals: n*
2. for n=n* minimize the management

failures
as defined below:

n

. . 1s t mf mfi i 

2nd Pillar: Synthetic risk indicator

42

3rd INTUITION2nd INTUITION1st INTUITION

2nd Pillar: Synthetic risk indicator

The stochastic non linear programming problem

optimal set of volatility intervals
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Hypothesis:

Stochastic volatility model where the automatic 
asset manager is “mean-reverting”:

The automatic asset manager:
• has no systematic preference for upwards or downwards deviations from

the mean symmetric distribution for the volatility

• in order to minimize the migration risk, keeps the product volatility far from
the bounds of the interval probability decay over the tails

Automatic Asset Manager
1st INTUITION
2nd Pillar: Synthetic risk indicator
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Hypothesis:

Stochastic volatility model where the automatic 
asset manager is “mean-reverting”:

A proper definition of the parameters for the following pair of SDEs:

Automatic Asset Manager

(1)

2 2 (2)( )
t t t t t

t t t t

dS rS dt S dW
d dt v dW



   

 

  

2nd Pillar: Synthetic risk indicator

1st INTUITION
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Simulation of the trajectories of the volatility 
realized by the automatic asset manager

t

t

Product
value

Annualized volatility 
of daily returns

Automatic Asset Manager

2nd Pillar: Synthetic risk indicator

1st INTUITION



46

An a-confident volatility prediction interval is defined by the pair
s.t.:

where is the annualized daily returns volatility realized by
the automatic asset manager at day t based on the last 252
product’s daily returns.

Definition 1

min, max,[ , ]t t 

,min ,maxPr( )AAM
t t t     

AAM
t

A “management failure” is said to occur at day t if either
or

Definition 2

,max
AAM
t t  ,min

AAM
t t 

Management Failures

Volatility Prediction Intervals

2nd Pillar: Synthetic risk indicator

2nd INTUITION
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st sG
max

t

Management Failures

Volatility Prediction Intervals

Volatility realized by the AAM
Upper Bound of VPI
Lower Bound of VPI

management 
failure

2nd Pillar: Synthetic risk indicator

2nd INTUITION
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Hypothesis:

Adaptive GARCH 
diffusive models to 

measure the ability of the 
automatic asset manager 
to remain within his risk 

budget

G
t(3),max

t

t

G
t(2),min

G
t(2),max

G
t(1),max

G
t(1),min

t(3)t(2)t(1)

G
t(3),min

Management Failures

Volatility Prediction Intervals

2nd Pillar: Synthetic risk indicator

2nd INTUITION
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Hypothesis:

Adaptive GARCH 
diffusive models to 

measure the ability of the 
automatic asset manager 
to remain within his risk 

budget

t

t

G
min

G
max

ADAPTIVITY

Management Failures

Volatility Prediction Intervals

2nd Pillar: Synthetic risk indicator

2nd INTUITION
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Management Failures
Diffusive GARCH Implementation

2nd Pillar: Synthetic risk indicator
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K reasonably small (around 60)

Adaptivity of Diffusive GARCH 
allows to work with poorer filtrations:

REMARK

2nd Pillar: Synthetic risk indicator

Management Failures
Diffusive GARCH Implementation
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the estimated parameters enter in the bounds of the volatility prediction interval

2nd Pillar: Synthetic risk indicator

Management Failures
Diffusive GARCH Implementation
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NO INCENTIVE TO CHOOSE A SPECIFIC CLASS

1 2 3 4 n

t G
max

t

...1 2 3 4mf mf mf mf mfn    

Suitable 
volatility grid

Volatility 
Prediction 
Intervals

Management 
Failures

2nd Pillar: Synthetic risk indicator

3rd INTUITION
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The stochastic non linear programming problem

The higher is n the smaller will be the 
average width of the volatility intervals 
and the lower is the average number 

of the management failures 

n*=7

Solution to step 1

2nd Pillar: Synthetic risk indicator
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LEMMA (for two consecutive intervals) 

Let A and C be two known volatilities with A<C. Then, the value of 
B s.t.:      

is:                   or, equivalently:

  [ , ] [ , ]min max ,
A B B C

B

mf mf   

B A C   CB

A B

m
 

 
5% 7% 8% 9%

9,
5% 10
%

10
,5
%

11
%

12
%

13
%

15
%

17
%

20
%

22
%

A=4%

mf

C=25%

B=10%

where m is called “multiplier”.

A C

maxmf

2nd Pillar: Synthetic risk indicator

The stochastic non linear programming problem
Solution to step 2
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Let [1,2] and [3,4] be two volatility intervals having the same
multiplier m, i.e.:

then, the two intervals have the same number of “management
failures”, i.e.:

where is the total number of management failures
occurred to the automatic asset manager of the ith volatility
interval.

2 4

1 3

m  
 

 

1 2mf mf

,  1,2imf i 

COROLLARY

2nd Pillar: Synthetic risk indicator

The stochastic non linear programming problem
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σ1=0

σ2 σ3 σ4 σn

the 1st and the nth interval 
cannot respect the multiplier

+∞

the 1st and the nth interval must be chosen
looking at exogenous information

2nd Pillar: Synthetic risk indicator

The stochastic non linear programming problem
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ASSUMPTIONS

…corresponding to a percentage loss 
of about 50% of the invested capital 

over a 1-year time horizon

25% AS THE LOWER BOUND OF
THE LAST VOLATILITY 

INTERVAL

…corresponding to typical results of 
monetary markets instruments

0.25% AS THE UPPER BOUND 
OF THE FIRST VOLATILITY 

INTERVAL

2nd Pillar: Synthetic risk indicator

The stochastic non linear programming problem

59

 
2 3 7 2, ,6

min max ii
mf

      

the optimization problem becomes:

with:  σ2=0.25%    σ7=25%

given n*=7:       

. . 1s t mf mfi i 

2nd Pillar: Synthetic risk indicator

The stochastic non linear programming problem
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Risk Classes
Volatility Intervals
σmin σmax

Very Low 0.01% 0.24%
Low 0.25% 0.63%

Medium-Low 0.64% 1.59%
Medium 1.60% 3.99%

Medium-High 4.00% 9.99%
High 10.00% 24.99%

Very High 25.00% >25.00%

Suitable volatility grid

m*=2.5

The optimal set of volatility intervals
is consistent with the principle:  + RISK + LOSSES

OUTPUT

2nd Pillar: Synthetic risk indicator
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Definition of a suitable volatility grid
summarizing:

automatic asset manager 

t

Product
value

t

Annualized volatility 
of daily returns

t

G
min

G
maxG

max

min,
AAM G
t t 

diffusive GARCH to detect
management failures

3 52 4

1 2 3 4 1

n

n

m   
     

     

 
2 3 7 2, ,6

min max ii
mf

      

with:  σ2=0.25%    σ7=25%

given n*=7:       

. . 1s t mf mfi i 

Risk Classes
Volatility Intervals

σmin σmax

Very Low 0.01% 0.24%

Low 0.25% 0.63%

Medium-Low 0.64% 1.59%

Medium 1.60% 3.99%

Medium-High 4.00% 9.99%

High 10.00% 24.99%

Very High 25.00% >25.00%

m*=2.5

2nd Pillar: Synthetic risk indicator
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for performance target products the recommended minimum 
investment horizon is inherent to their financial engineering, 

as the recommended investment horizon is equal to the 
period of validity (or the time to maturity) of their target

The recommended investment time horizon

The payoff at maturity uniquely identifies 
the time when the potential returns are optimized

3rd Pillar: The recommended Investment horizon

RISK TARGET
PRODUCT

BENCHMARK
PRODUCT

RETURN TARGET
PRODUCT
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The use of solutions aimed at ensuring the liquidity and/or 
marketability of a return target product changes its risk-return profile 

and its recommended investment time horizon

3rd Pillar : The recommended Investment horizon

The recommended investment time horizon

The investment recovers the initial costs and
off-sets the running costs at least once

that can be calculated through the concept of

First Passage Time

The “minimum” recommended investment time horizon

The event to study from a probabilistic point of view
transforms into:

RISK TARGET
PRODUCT

BENCHMARK
PRODUCT

RETURN TARGET
PRODUCT
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For risk target products, the natural way to define a cost
recovery event is also:

The investment recovers the initial costs and
off-sets the running costs at least once

that can be calculated through the concept of

First Passage Time
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The “minimum” recommended investment time horizon

RISK TARGET
PRODUCT

BENCHMARK
PRODUCT

RETURN TARGET
PRODUCT
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Time (years)

First Passage Time: 
First time (expressed in years) such that the value of the Invested Capital
(CI) recovers the initial costs and off-sets the running costs.

ci = Initial Costs

CN = Nominal Capital

3rd Pillar : The recommended Investment horizon
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given a confidence level α, uniquely identifies a time T* on the
cumulative distribution function of the first passage times, i.e.:

where

is the first passage time

The probability of the event:

    TtTT ** :

 CNCItt t   :inf*
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The investment recovers the initial costs and off-sets the running costs
at least once
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Time (years)

1. Calculation of the probability distribution of the first passage times:

3rd Pillar : The recommended Investment horizon
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2. Derivation of the cumulative distribution function of the first passage
times:

3rd Pillar : The recommended Investment horizon

Time (years)

Volatility 4%
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3. The confidence level α uniquely identifies T* on the cumulative 
distribution function of the first passage times:

Time (years)
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Volatility 4%
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When many probability distribution functions are considered, letting
varying volatilities and costs, the problem of correctly identifying a set of
minimum thresholds arises:

Time (years)

3rd Pillar : The recommended Investment horizon
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…. Must be coherent with the principle

+ VOLATILITY + TIME HORIZON

Anyway, the recommended minimum 
investment time horizon…

    TtTT ** :

3rd Pillar : The recommended Investment horizon

The correct way to solve the problem is to set up an
operative procedure to select properly each threshold

according to the above principle
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First passage times for the break-even barrier are monitored at
infinitesimal time intervals:

    TtTT ** :
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Asymptotic properties:

0dt
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cr : recurrent costs
as a fixed %

Connection between probability, volatility and costs
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For a given level of costs, it is possible to analytically derive the
connection between volatility and time horizon

Under our assumptions:

0dt
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,T 0dt FIRST ORDER
SENSITIVITY
ANALYSIS

Connection between probability, volatility and costs
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,T 0dt

The existence of two alternative states of nature requires to
verify whether both of them make sense in financial terms under
the risk-neutral measure.
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,T 0dt

Being running costs a specific feature of any financial product
they would interfere with the task of identifying which of the two
conditions has a sound financial meaning. Therefore, they will
be temporarily neglected.
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,T 0dt

Since it is safe to assume a positive interest rate r in financial
markets, only condition 1. correctly captures the connection
between volatility and time horizon.
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,T 0dt
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2.
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   ijijji    ,,

As T→ condition 1. implies that the cumulative distribution
function P is a strictly decreasing function of the volatility, i.e.:

Connection between probability, volatility and costs
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,T 0dt
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In other words, for a given a confidence level, as the volatility grows, the
recommended investment time horizon increases as well:

+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

Connection between probability, volatility and costs
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0cr 
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,T 0dt
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Second Order
Sensitivity
Analysis
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Summarizing the results of the asymptotic analysis in continuous time:
• As T →, for given a confidence level, more volatility implies a larger

recommended investment time horizon
• It is always possible to find a minimum and finite time T*, beyond which

the strong condition
+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

holds
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Everything shown above also holds with T finite!
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In synthesis, at a finite time T:
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Given the monotonicity condition of the probability distribution with
respect to volatility, i.e.:
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In order to fulfill this condition, it’s necessary to restrict the analysis in
the region where the probability function is strictly increasing, i.e.:
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