The opinions expressed may not reflect the ones of CONSOB

Integrated risk measurement and representation for nonequity products: how to frame material risks over the time horizon of the investment

Marcello Minenna - Head of Quantitative Analysis Unit, Consob

Syllabus

Preliminaries

Three-pillars approach:

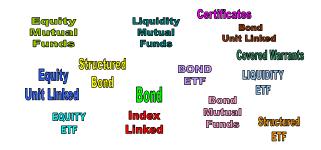
1st Pillar: unbundling and performance scenarios

2nd Pillar: the degree of risk

3rd Pillar: recommended investment time horizon

Preliminaries

Non-equity Investment products: definition



Preliminaries

Non-equity Investment products should be classified according to their financial characteristics and not by "labels" that are assigned by the issuer and/or by the European regulatory framework.

Preliminaries

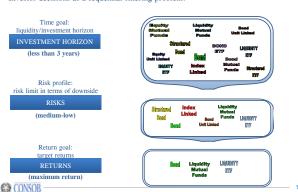
The transparency on the risk profile of non-equity investment products is based on three synthetic indicators (three pillars) – defined through the development of specific quantitative methods – in order to allow investors to take informed investment decisions.

Synthetic indicators robust, objective and backward verifiable

Preliminaries

Preliminaries

Investor decisions as a sequential filtering problem:



Syllabus

CONSOB

Preliminaries

Three-pillars approach:

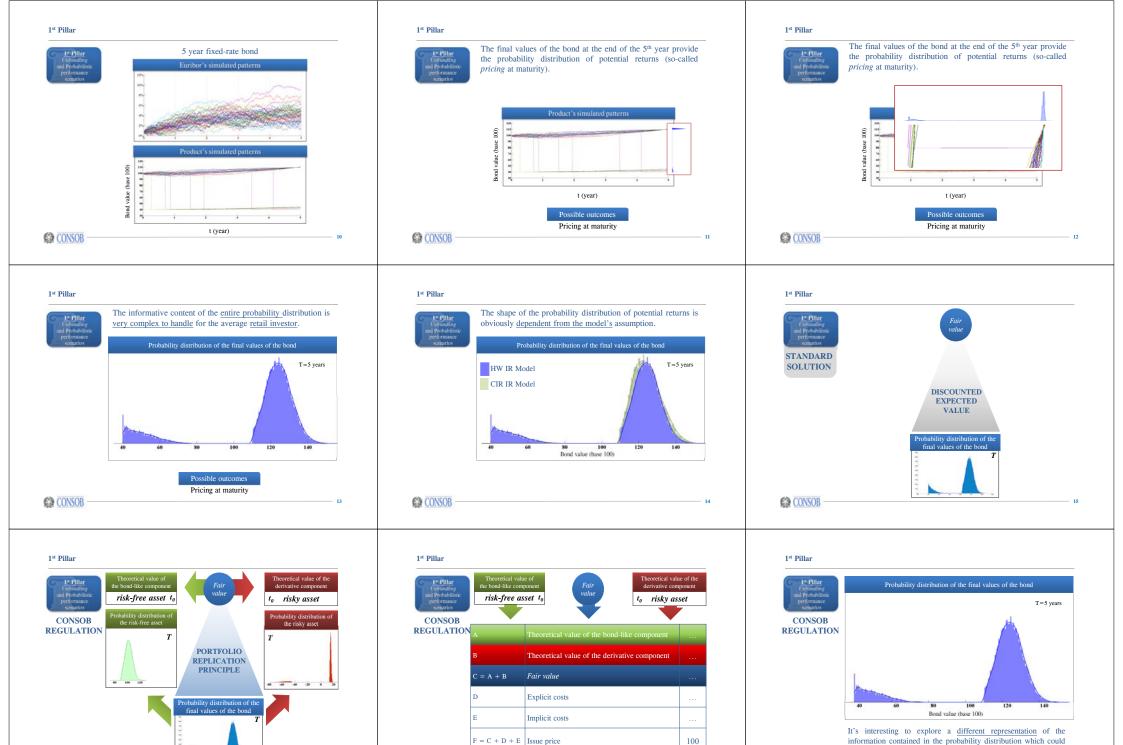
1st Pillar: unbundling and performance scenarios

2nd Pillar: the degree of risk

3rd Pillar: recommended investment time horizon

1st Pillar

In "return target" products (e.g. corporate bonds) the connection between the pricing at time zero and the pricing at maturity is evident, as the probability table is a necessary step to obtain the unbundling of the price of the product at time 0.

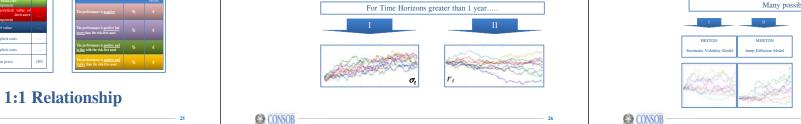


CONSOB

CONSOB

be <u>useful</u> for the average investor

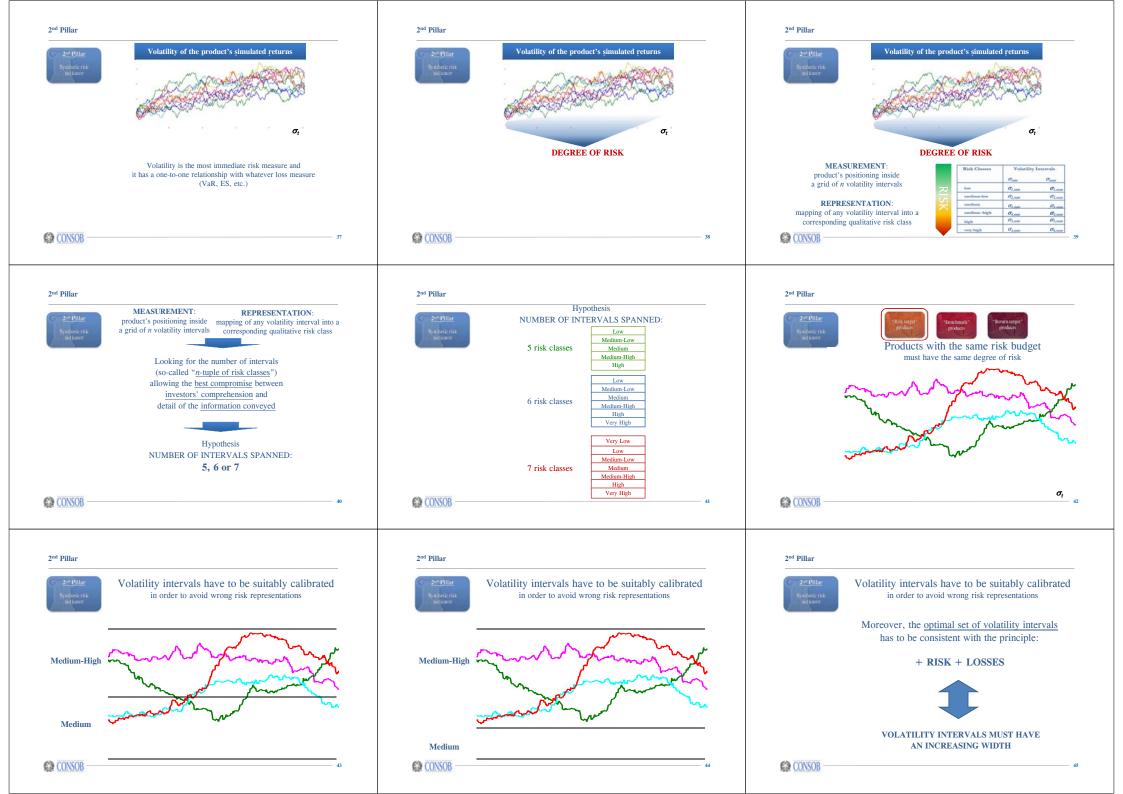


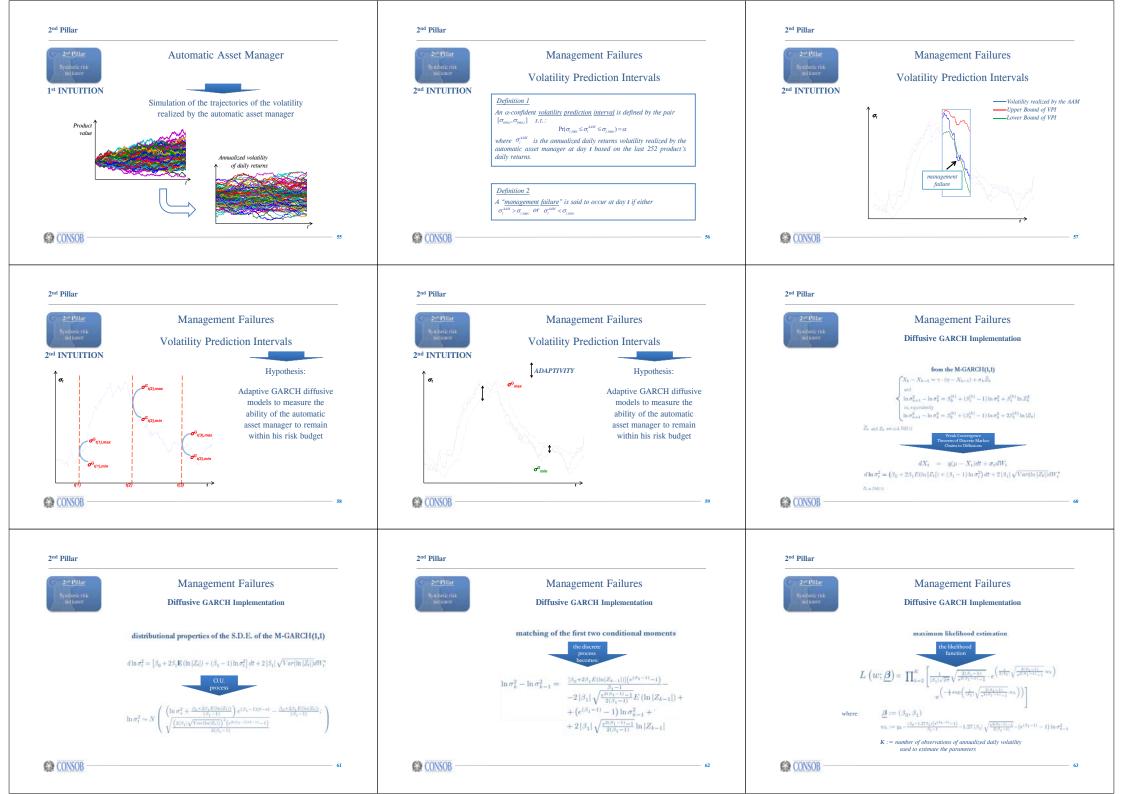


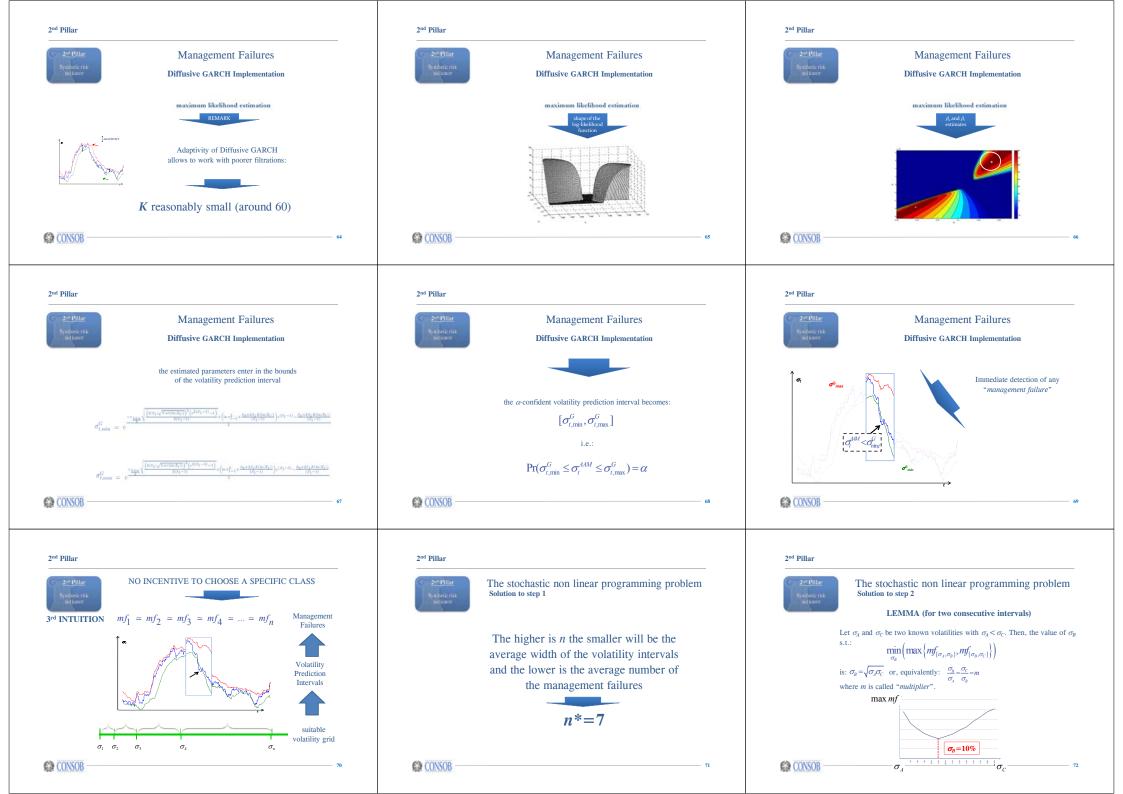
CARR MADAN CHANG

BARNDORFF NIFLSEN

© CONSOB







The stochastic non linear programming problem

COROLLARY (for two consecutive intervals)

Let $[\sigma_1 \ \sigma_2]$ and $[\sigma_3 \ \sigma_4]$ be two volatility intervals having the same multiplier m, i.e.:

$$m = \frac{\sigma_2}{\sigma_1} = \frac{\sigma_4}{\sigma_3}$$

then, the two intervals have the same number of "management failures", i.e.:

$$mf_1 = mf_2$$

where mf_i , i=1,2 is the total number of management failures occurred to the automatic asset manager of the i-th volatility interval, that is the realized number of breaches of the diffusive GARCH-based volatility prediction intervals

2nd Pillar

The stochastic non linear programming problem

ASSUMPTION

25% AS THE LOWER BOUND OF THE LAST VOLATILITY INTERVAL

...corresponding to a percentage loss of about 50% of the invested capital over a 1-year time horizon

2nd Pillar

 $m^* = 2.5$

Suitable volatility grid

OUTPUT

Risk Classes	Volatility Intervals	
	$\sigma_{ m min}$	$\sigma_{ m max}$
Very Low	0.01%	0.24%
Low	0.25%	0.59%
Medium-Low	0.6%	1.59%
Medium	1.60%	3.99%
Medium-High	4.00%	9.99%
High	10.00%	24.99%
Very High	25.00%	>25.00%

2nd Pillar

The stochastic non linear programming problem Generalizing for n consecutive intervals:

The lemma and the corollary can be applied iteratively leading to:

$$\frac{\sigma_2}{\sigma_1} = \frac{\sigma_3}{\sigma_2} \qquad \frac{\sigma_3}{\sigma_2} = \frac{\sigma_4}{\sigma_3} \qquad \frac{\sigma_4}{\sigma_3} = \frac{\sigma_5}{\sigma_4} \qquad \cdots \qquad \frac{\sigma_{n-1}}{\sigma_{n-2}} = \frac{\sigma_n}{\sigma_{n-1}}$$

$$\frac{\sigma_2}{\sigma_1} = \frac{\sigma_3}{\sigma_2} = \frac{\sigma_4}{\sigma_3} = \frac{\sigma_5}{\sigma_4} = \cdots = \frac{\sigma_n}{\sigma_{n-1}} = m$$

The stochastic non linear programming problem

ASSUMPTION

0.25% AS THE UPPER BOUND

OF THE FIRST VOLATILITY INTERVAL

...corresponding to typical results of

monetary markets instruments

CONSOB

2nd Pillar

CONSOB

2nd Pillar

CONSOB

2nd Pillar

The stochastic non linear programming problem

the I^{st} and the n^{th} interval cannot respect the multiplier

the I^{st} and the n^{th} interval must be chosen looking at exogenous information

CONSOB

2nd Pillar

The stochastic non linear programming problem

the optimization problem becomes:

given
$$n^* = 7$$
:

$$\min_{\sigma_2 < \sigma_3 < \dots < \sigma_7} \left(\max_{i=2,\dots,6} m f_i \right)$$

$$s.t. \ m f_{i+1} - m f_i \approx 0$$

s.t.
$$m y_{i+1} - m y_i \approx 0$$

with: $\sigma_2 = 0.25\%$ $\sigma_7 = 25\%$

CONSOB

2nd Pillar

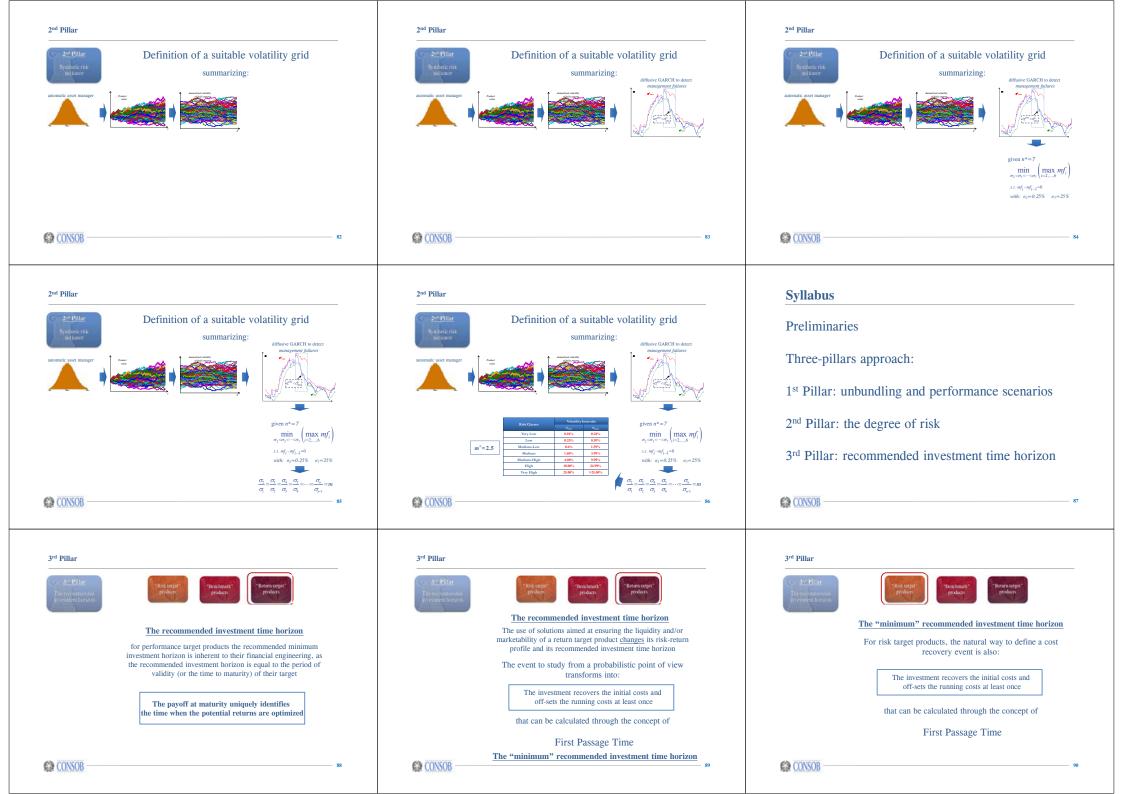
Definition of a suitable volatility grid summarizing:

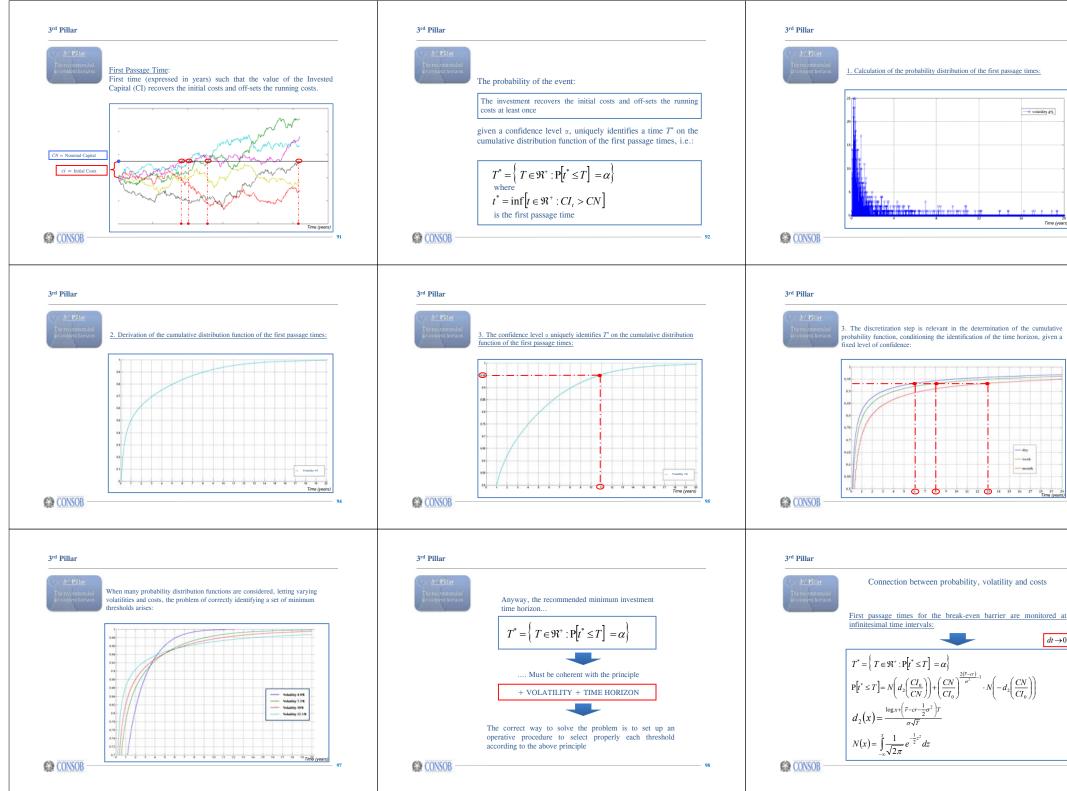
Suitable volatility grid **REMARK**

The optimal set of volatility intervals is consistent with the principle:

VOLATILITY INTERVALS HAVE AN INCREASING WIDTH

CONSOB





- volatility 4%

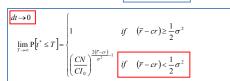
 $dt \rightarrow 0$

3rd Pillar

Connection between probability, volatility and costs

Asymptotic properties: $T \rightarrow \infty$

cr : recurrent costs as a fixed %



CONSOB

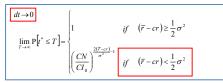
CONSOB

3rd Pillar

3/7 Pillar
The recommended laye surjett horizon

Connection between probability, volatility and costs

Under our assumptions:



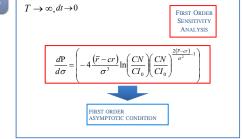
For a given level of costs, it is possible to analytically derive the connection between volatility and time horizon

CONSOB —

101

3rd Pillar

Connection between probability, volatility and costs



CONSOB

3rd Pillar

Connection between probability, volatility and costs

$$T \to \infty, dt \to 0$$

$$\frac{d\mathbf{P}}{d\sigma} = \left(-4 \frac{(\bar{r} - cr)}{\sigma^3} \ln \left(\frac{CN}{CI_0} \right) \left(\frac{CN}{CI_0} \right)^{\frac{2(\bar{r} - cr)}{\sigma^3} - 1} \right)$$

$$1. \quad (\bar{r} - cr) > 0 \Leftrightarrow \frac{d\mathbf{P}}{d\sigma} < 0$$

$$2. \quad (\bar{r} - cr) \le 0 \Leftrightarrow \frac{d\mathbf{P}}{d\sigma} \ge 0$$

The existence of two alternative states of nature requires to verify whether both of them make sense in financial terms under the risk-neutral measure.

CONSOB -

3rd Pillar

Connection between probability, volatility and costs

$$T \to \infty, dt \to 0$$

$$\frac{dP}{d\sigma} = \left(-4 \frac{\bar{r}}{\sigma^3} \ln \left(\frac{CN}{CI_0} \right) \left(\frac{CN}{CI_0} \right)^{\frac{2\bar{r}}{\sigma^2} - 1} \right)$$

$$1. \quad \bar{r} > 0 \Leftrightarrow \frac{dP}{d\sigma} < 0$$

$$2. \quad \bar{r} \le 0 \Leftrightarrow \frac{dP}{d\sigma} \ge 0$$

Being running costs a specific feature of any financial product they would interfere with the task of identifying which of the two conditions has a sound financial meaning. Therefore, they will be temporarily neglected.

CONSOB

3rd Pillar

Connection between probability, volatility and costs

$$T \to \infty, dt \to 0$$

$$\frac{dP}{d\sigma} = \left(-4\frac{\vec{r}}{\sigma^3} \ln \left(\frac{CN}{CI_0} \right) \left(\frac{CN}{CI_0} \right)^{\frac{2\vec{r}}{\sigma^2} - 1} \right)$$

$$1. \quad \vec{r} > 0 \Leftrightarrow \frac{dP}{d\sigma} < 0$$

$$2. \quad \vec{r} \le 0 \Leftrightarrow \frac{dP}{d\sigma} \ge 0$$

Since it is safe to assume a positive interest rate r in financial markets, only condition 1. correctly captures the connection between volatility and time horizon.

3rd Pillar

Connection between probability, volatility and costs

$$T \to \infty, dt \to 0$$

$$\frac{dP}{d\sigma} = \left(-4\frac{\overline{r}}{\sigma^3} \ln \left(\frac{CN}{CI_0} \right) \left(\frac{CN}{CI_0} \right)^{\frac{2\overline{r}}{\sigma^2} - 1} \right)$$

$$1. \quad \overline{r} > 0 \Leftrightarrow \frac{dP}{d\sigma} < 0$$

$$2. \quad \overline{r} \le 0 \Leftrightarrow \frac{dP}{d\sigma} > 0$$

$$cr = 0$$

As $T \rightarrow \infty$ condition 1. implies that the cumulative distribution function P is a strictly decreasing function of the volatility, i.e.:

$$\forall \sigma_i, \sigma_j \in \Re^+, \sigma_j > \sigma_i \Rightarrow P(\sigma_j) < P(\sigma_i)$$

3rd Pillar

Connection between probability, volatility and costs

$$T \to \infty, dt \to 0$$

$$\frac{dP}{d\sigma} = \left(-4 \frac{\overline{r}}{\sigma^3} \ln \left(\frac{CN}{CI_0} \right) \left(\frac{CN}{CI_0} \right)^{\frac{2\overline{r}}{\sigma^2} - 1} \right)$$

$$1. \quad \overline{r} > 0 \Leftrightarrow \frac{dP}{d\sigma} < 0$$

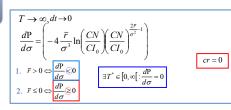
$$2. \quad \overline{r} \leq 0 \Leftrightarrow \frac{dP}{d\sigma} \geq 0$$

In other words, for a given a confidence level, as the volatility grows, the recommended investment time horizon increases as well:

+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

3rd Pillar

Connection between probability, volatility and costs



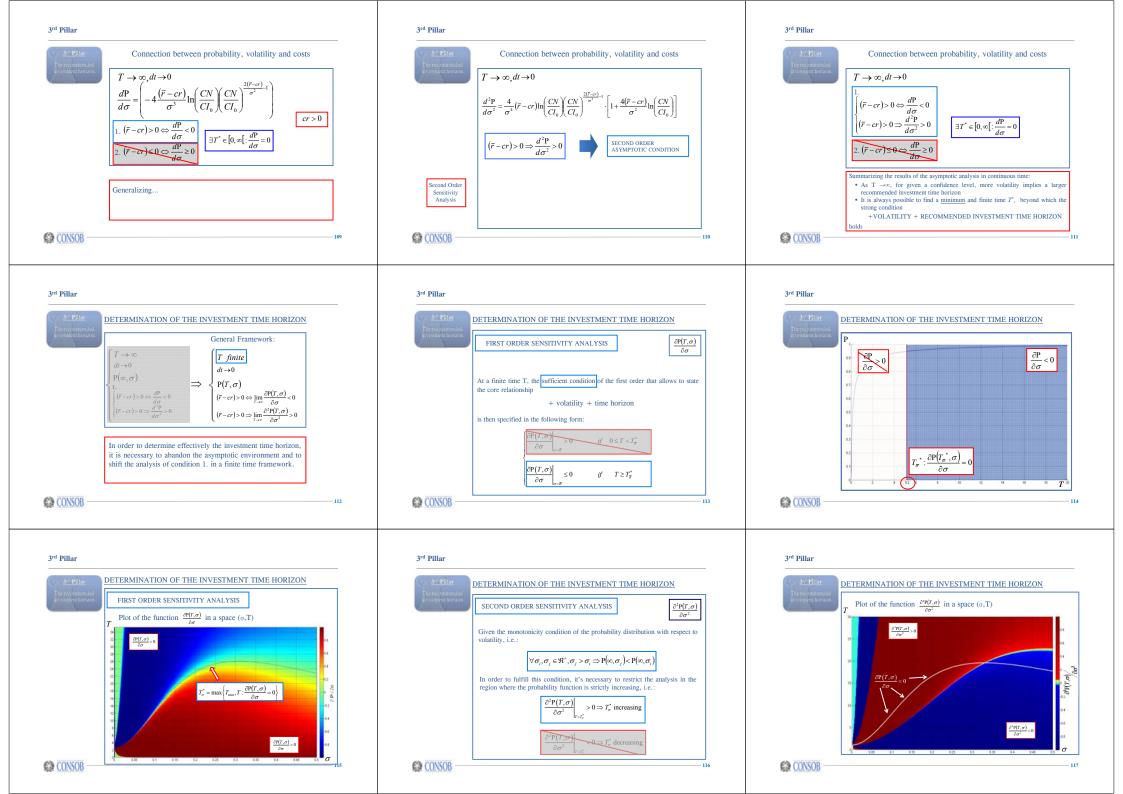
Furthermore, condition 1. alone is sufficient to guarantee a $\underline{\text{minimum}}$ time T^* beyond which the following strong condition holds:

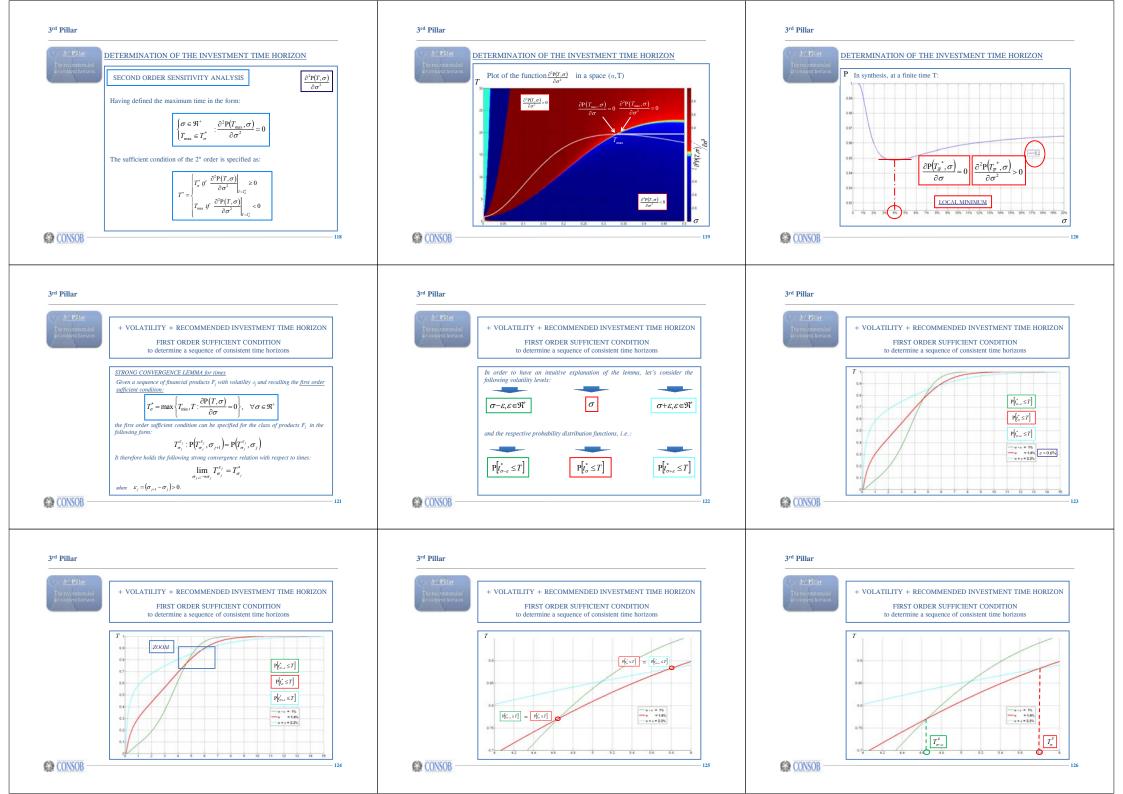
+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

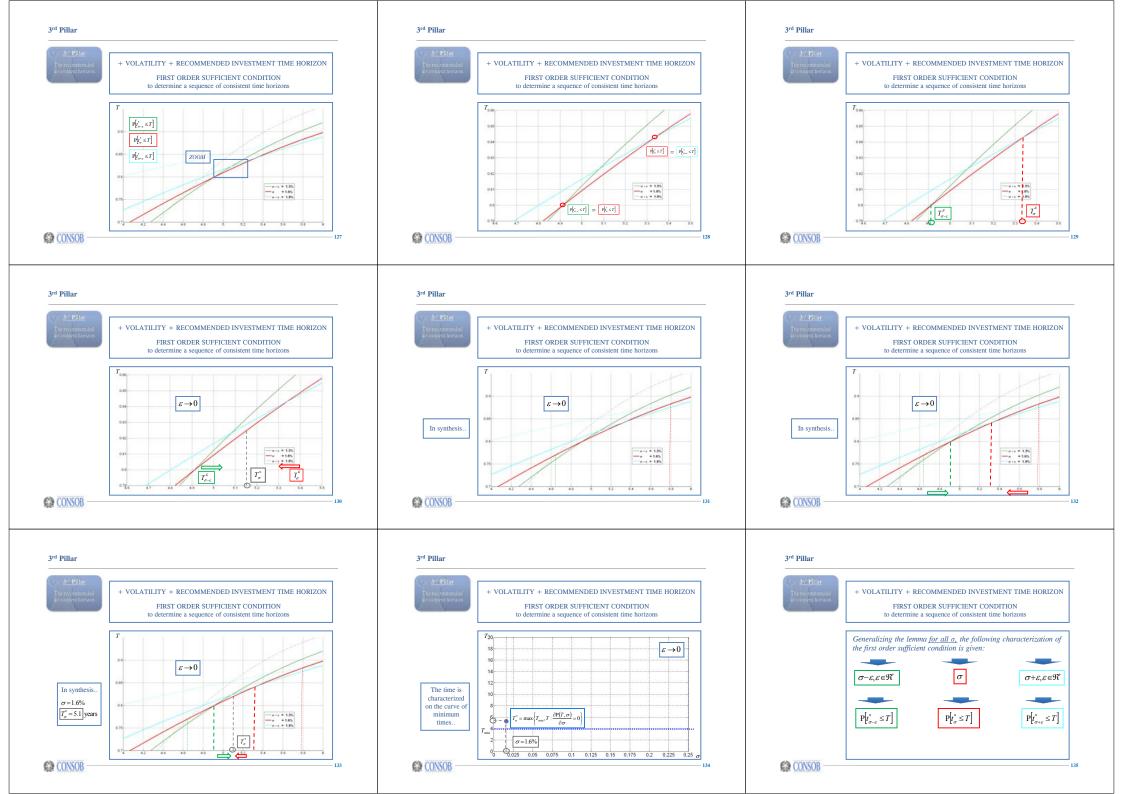
CONSOB

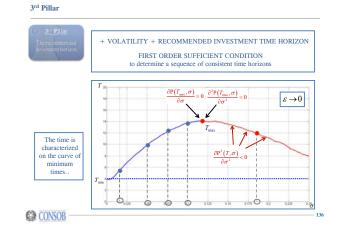
CONSOB

----10







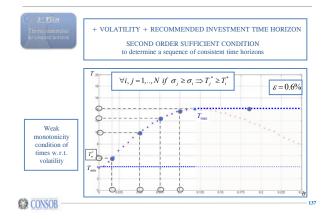


The opinions expressed may not reflect the ones of CONSOB

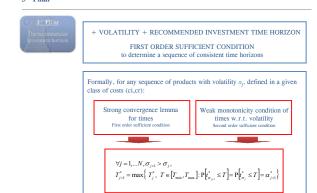
Integrated risk measurement and representation for nonequity products: how to frame material risks over the time horizon of the investment

Marcello Minenna - Head of Quantitative Analysis Unit, Consob

3rd Pillar



3rd Pillar



CONSOB