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Non-equity Investment products should be classified according to their financial
characteristics and not by “labels” that are assigned by the issuer and/or by the The transparency on the risk profile of non-equity investment

European regulatory framework.
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Three-pillars approach:
1%t Pillar: unbundling and performance scenarios
2nd Pillar: the degree of risk

3rd Pillar: recommended investment time horizon
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In “return target” products (e.g. corporate bonds) the connection
between the pricing at time zero and the pricing at maturity is
evident, as the probability table is a necessary step to obtain the
unbundling of the price of the product at time 0.

Possible
outcomes
Pricing Pricing

at time zero at maturity
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5 year fixed-rate bond

Euribor’s simulated

Bond value (base 100)
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t (year)
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The final values of the bond at the end of the 5 year provide
the probability distribution of potential returns (so-called
pricing at maturity).
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Bond value (base 100)

t (year)

le outcomes

Pricing at maturity
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1* Pillar

€3 CONSOB

The final values of the bond at the end of the 5" year provide
the probability distribution of potential returns (so-called
pricing at maturity).

——

Bond value (base 100)

Pricing at maturity

1% Pillar

The informative content of the entire probability distribution is
very complex to handle for the average retail investor.

1% Pillar

The shape of the probability distribution of potential returns is
obviously dependent from the model’s assumption.

Probability distribution of the final values of the bond
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Theoretical value of
the bond-like component

Theoretical value of the
derivative component

Probability distribution of
the risky asset

PORTFOLIO
REPLICATION
PRINCIPLE

Probability distribution of the
final values of the bond

& Theoretical value of
Plllar
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Theoretical value of the derivative component

Fair value

D Explicit costs

E Implicit costs

F=C+D + E |Issue price 100
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Bond value (base 100)

It’s interesting to explore a different representation of the
information contained in the probability distribution which could
be useful for the average investor
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s 100
Bond value (base 100)

In order to provide the investor with a representation fair, easy to
understand and resilient to the model’s risk, a simple rescaling
with respect to the risk-neutral measure numeraire is presented

1%t Pillar
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T =3 years

an L) 0 Id 120 I:lﬂ
Bond value (base 100)

In order to provide the investor with a representation fair, easy to
understand and resilient to the model’s risk, a simple rescaling
with respect to the risk-neutral measure numeraire is presented
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account

T=5 years

an 0 £ 100
Bond value (base 100)

The superimposition of the product’s probability distribution with the
cash account naturally defines three different events which are
effectively meaningful for the investor.
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Model Risk Assessment Model Risk Assessment
Connection between the pricing at time zero and the pricing . .
at the end of recommended investment horizon
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Step 2:  Calculation of the Probability Distribution of the Invested Capital at
the end of recommended time horizon

P S 0 10

o

1%t Pillar

Step 2:

Calculation of the Probability Distribution of the Invested Capital at

the end of recommended time horizon

—

HESTON MERTON
Probability Distribution
of the Risk-Free Asset
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1%t Pillar

Step 3:  Probabilistic comparison with the Risk-Free Asset

Analysing the probability distributions...
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1% Pillar

Step 3:  Probabilistic comparison with the Risk-Free Asset

... the following output is obtained:
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Step 3:

Probabilistic comparison with the Risk-Free Asset

€3 CONSOB

Assessing the model risk:

A < 47%

1% Pillar

Step 3:  Probabilistic comparison with the Risk-Free Asset |

Assessing the model risk:
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1¢ Pillar

Step 3:  Probabilistic comparison with the Risk-Free Asset |

Assessing the model risk:
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1¢t Pillar

Step 3:

Probabilistic comparison with the Risk-Free Asset
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Assessing the model risk:

Syllabus

Preliminaries

Three-pillars approach:

1% Pillar: unbundling and performance scenarios
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3t Pillar: recommended investment time horizon
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2" Pillar 2nd Pillar 2nd Pillar
Volatility of the product’s simulated returns Volatility of the product’s simulated returns Volatility of the product’s simulated returns
G O [
DEGREE OF RISK DEGREE OF RISK
Volatility is the most immediate risk measure and MEASUREMENT: e e —
it has a one-to-one relationship with whatever loss measure product’s positioning inside . = ' i
(VaR, ES, etc.) a grid of n volatility intervals = a_ :
e -
/T L
REPRESENTATION: e Timm
mapping of any volatility interval into a [/ T
corresponding qualitative risk class ' Than L.
- e
€3 CONSOB s €3 CONSOB 3 €3 CONSOB »
2nd Pillar 27 Pillar 2nd Pillar
MEASUREMENT: REPRESENTATION: Hypothesis
product’s positioning inside  mapping of any volatility interval into a NUMBER OF INTERVALS SPANNED:
a grid of n volatility intervals  corresponding qualitative risk class Low
Medium-Low . .
— 5 risk classes Medium Products with the same risk budget
Looking for the number of intervals Mcdn;:;‘mgh must have the same degree of risk
(so-called “n-tuple of risk classes”)
allowing the best compromise between " d,“’“’l
edium-Low
investors’ comprehension and 6 risk cl Medium
detail of the information conveyed risk classes Medium-High
High
- Very High
Hypothesis Very Low
NUMBER OF INTERVALS SPANNED: Low
Medium-Low
5,6o0r7 7 risk classes Medium
Medium-High
High
Very High o
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Medium-High

Medium
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Volatility intervals have to be suitably calibrated
in order to avoid wrong risk representations

43

Medium-High

Medium

€3 CONSOB

Volatility intervals have to be suitably calibrated
in order to avoid wrong risk representations

Volatility intervals have to be suitably calibrated
in order to avoid wrong risk representations

Moreover, the optimal set of volatility intervals
has to be consistent with the principle:

+ RISK + LOSSES

VOLATILITY INTERVALS MUST HAVE
AN INCREASING WIDTH
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2" Pillar

2nd Pillar 20d Pillar
How to define a suitable volatility grid How to define a suitable volatility grid How to define a suitable volatility grid
In order to analyze the management failures, (i.e.: to specify and
Minimizing the chance for an asset manager Minimizing the chance for an asset manager solve the SNLP problem).....
of overcoming not intentionally his risk budget, of overcoming not intentionally his risk budget, 15t INTUITION
i.e. the volatility interval i.e. the volatility interval
(so-called “management failure”) (so-called “management failure”) it has to be studied the behavior
of an automatic asset manager
—— that has a specific risk budget,
The optimal set of volatility intervals for a given n-tuple identified by a given volatility interval
of risk classes requires to solve a stochastic NLP problem
(i.e. minimize the chance of a “management failure”)
€ CONSOB “ €3 CONSOB “ €3 CONSOB N
2nd Pillar 27 Pillar 2nd Pillar
. .. . . . .. . The stochastic non linear programming problem
How to define a suitable volatility grid How to define a suitable volatility grid Pros ep
—_— — optimal set of volatility intervals
In order to analyze the management failures, (i.e.: to specify and In order to analyze the management failures, (i.e.: to specify and
solve the SNLP problem).... solve the SNLP problem).... Let neN be the number of volatility intervals
2nd INTUITION 3rd INTUITION (so-called “n-tuple of risk classes”)
Then, the optimization problem is twofold:
ili iction i i the optimal set of volatility intervals must allow . .
volatility prediction intervals have to be determined, P | P y e 1. find the optimal number of intervals: n*
in order to measure the ability of the automatic asset a similar number of “management foilures 2. for n=n* minimize the management failures
manager to remain within his risk budget ) to .any autor.natlc as.set manag.ers as defined below:
(despite his belonging to different risk classes) .
min | max mf;
— 01<0y<<o, \i=l,...,n
NO INCENTIVE TO CHOOSE A SPECIFIC CLASS stomfy —mf;_| =0
€3 CONSOB @ €3 CONSOB o €3 CONSOB st
2nd Pillar 2nd Pillar 2nd Pillar
The stochastic non linear programming problem . .
Prog ep Automatic Asset Manager Automatic Asset Manager
i ility i Hypothesis: Hypothesis:
optimal set of volatility intervals 1t INTUITION yp 1 INTUITION yp
Stochastic volatility model where the automatic Stochastic volatility model where the automatic
' ‘ asset manager is “mean-reverting”: asset manager is “mean-reverting”:
1st INTUITION 21 INTUITION 3+ INTUITION
The automatic asset manager: A proper definition of the parameters for the following pair of
 has no systematic preference for upwards or downwards deviations SDEs:
from the mean = symmetric distribution for the volatility dSI = rSt dt + o, SI dW,(”
+ in order to minimize the migration risk, keeps the product volatility _ 2)
: : far from the bounds of the interval <» probability decay over the tails : dUIZ - I((._g—o’f)dt +thW(
€3 CONSOB E €3 CONSOB = €3 CONSOB =




2nd Pillar 2nd Pillar 20d Pillar
Automatic Asset Manager Management Failures Management Failures
Volatility Prediction Intervals Volatility Prediction Intervals
1% INTUITION — 204 INTUITION 2% INTUITION
Simulation of the trajectories of the volatility Definition 1 ;‘”“"‘“‘3 “"‘[“Zfdv g the AAM
realized by the automatic asset manager A[;; a—'cg_nﬁa]lems .vrz.).l.atilitv prediction interval is defined by the pair . /\\Lﬁ\ _LLI;»I; :: EZ::; :; .
Product ) Pi(o,,, <0/ <0, )=a
value i e
where """ is the annualized daily returns volatility realized by the
automatic asset manager at day t based on the last 252 product’s
Annualized volatility daily returns.
of daily returns V4
management
Jailure
Definition 2
A “management failure” is said to occur at day t if either
o >0, 08 oM <o,
T
r
€ CONSOB 5 €3 CONSOB s €3 CONSOB s
2nd Pillar 27 Pillar 2nd Pillar
Management Failures Management Failures Management Failures
Volatility Prediction Intervals Volatility Prediction Intervals Diffusive GARCH Implementation
20 INTUITION . 2% INTUITION .
Hypothesis: IADAPTI vITY Hypothesis: from the M-GARCH(1L1)
a : : : o - X = Xier n—X 7
I r"ﬁ'*z’”‘ | Adaptive GARCH diffusive I " Adaptive GARCH diffusive _ .
: : models to measure the models to measure the A e bl s
: :K - : ability of the automatic ability of the automatic 1 .
| | o | asset manager to remain asset manager to remain
: . : '(““vmmax within his risk budget within his risk budget
(1), max
4 I R. ¢
N\ | 1,y
T | | P
[ | | i
| | )
) ™ E6) T T
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Management Failures Management Failures Management Failures
Diffusive GARCH Implementation Diffusive GARCH Implementation Diffusive GARCH Implementation
distributional properties of the S.10.E, of the M-GARCH(1,1) matching of the first two conditional moments maximum likelihood estimation
S.ID.E, TH(L,
33|  Var(ln [ 2] a0 m m
s L (1) = TIL., [ )
et —lnof_, =
where: Bi= (355,
2 - L7 |3) Tt~ (e~ 1) me
K := number of observations of annualized daily volatility
used to estimate the parameters
€3 CONSOB o €3 CONSOB o €3 CONSOB ®




2nd Pillar

2" Pillar 2nd Pillar
Management Failures Management Failures Management Failures
Diffusive GARCH Implementation Diffusive GARCH Implementation Diffusive GARCH Implementation
maximum likelihood extimation maximum likelihood extimution masimum likelihood cxtimation
Adaptivity of Diffusive GARCH
allows to work with poorer filtrations:
K reasonably small (around 60)
€ CONSOB “ €3 CONSOB o €3 CONSOB o
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Management Failures Management Failures Management Failures
Diffusive GARCH Implementation Diffusive GARCH Implementation Diffusive GARCH Implementation
the estimated parameters enter in the bounds ’
of the volatility prediction interval a Immediate detection of any
“management failure”
the a-confident volatility prediction interval becomes:
e G G
[0 i O )
ie.:
= G M G N _
Pr(o},, <0/ <0l )=a P
T
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2nd Pillar 2nd Pillar 2nd Pillar
NO INCENTIVE TO CHOOSE A SPECIFIC CLASS The stochastic non linear programming problem The stochastic non linear programming problem
B - Solution to step 1 Solution to step 2
34 INTUITION fi ~m fZ - m f3 —m f4 - =m fn Management LEMMA (for two consecutive intervals)
Failures
. . . Let o, and o, be two known volatilities with o, < o,. Then, the value of g;
' The higher is n the smaller will be the st L ’
average width of the volatility intervals “j},n(“‘a"{mﬁa,ﬁqrmﬁwvd})
Volatility .
Prediction and the lower is the average number of is: 0, =\Jo,0. o, equivalently: % _%
. g, o
. the management failures where m is called “multiplier”. ’
* e -
n*=7
| e e o suitable
LI ! ! ! volatility grid T
g o, [ o, o, :
€3 CONSOB ™ €3 CONSOB " €3 CONSOB o ey 7




2nd Pillar

2nd Pillar 2nd Pillar
The stochastic non linear programming problem The stochastic non linear programming problem The stochastic non linear programming problem
COROLLARY (for two consecutive intervals) Generalizing for n consecutive intervals:
;=0 + oo
Let [0, 05] and [o; 0, be two volatility intervals having the same J i i ‘j i_ [ t ”: i
multiplier m, i.e.: L 3 ‘ " 2% N "
5 _%
"= o o The lemma and the corollary can be applied iteratively leading to: the 7%t and the n interval
then, the two intervals have the same number of “management %5 6 95 _ 9% &G _% | On_0G cannot respect the multiplier
failures”, i.e.: o 0 o o o g G O
mf, =mf, — .
where mf;, i=1,2 is the total number of management failures occurred to -—7 )
the automatic asset manager of the i'™ volatility interval, that is the the /* and the n interval must be chosen
realized number of breaches of the diffusive GARCH-based volatility o, 0, 0, O o, looking at exogenous information
o 5% S %,
prediction intervals 6 o, o o o,
€ CONSOB 7 €3 CONSOB ™ €3 CONSOB ™
2nd Pillar 27 Pillar 2nd Pillar
The stochastic non linear programming problem The stochastic non linear programming problem The stochastic non linear programming problem
ASSUMPTION ASSUMPTION o
the optimization problem becomes:
25% AS THE LOWER BOUND 0.25% AS THE UPPER BOUND
OF THE LAST VOLATILITY INTERVAL OF THE FIRST VOLATILITY INTERVAL given n*=7:
- = - = min_( max ny
0,<03< <07 \i=2,....6
...corresponding to a percentage loss of about 50% ...corresponding to typical results of stomfi g —mf; =0
of the invested capital over a 1-year time horizon monetary markets instruments with: 6,=0.25% 0,=25%
€3 CONSOB 7 €3 CONSOB 7 €3 CONSOB 7
2nd Pillar 2nd Pillar 2nd Pillar
Suitable volatility grid Suitable volatility grid Definition of a suitable volatility grid
summarizing:
S atility Intervals The optimal set of volatility intervals ‘
is consistent with the principle:
Very Low 0.01% 0.24%
Low 0.25% 0.59% + RISK + LOSSES
Medium-Low 0.6% 1.59%
m'=2.5 Medium 1.60% 3.99%
Medium-High 4.00% 9.99%
High 10.00% 24.99%
Very High 25.00% >25.00% VOLATILITY INTERVALS HAVE
AN INCREASING WIDTH
€3 CONSOB » €3 CONSOB w0 €3 CONSOB st
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Definition of a suitable volatility grid

summarizing:

automatic asset manager

)
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2nd Pillar

Definition of a suitable volatility grid

summarizing:

diffusive GARCH to detect
management failures

automatic asset manager
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2nd Pillar

Definition of a suitable volatility grid

summarizing:

diffusive GARCH to detect
management failures

automatic asset manager

)

given n*=7

min | max mf; )
2.6

0y <0y <<y \i=

st mfy-mf,_=0
with: 0,=0.25%  0,=25%
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2nd Pillar
Definition of a suitable volatility grid
summarizing:
diffusive GARCH to detect
management failures

)

given n*=7

min | max mf; )
2.6

0y<03<--<07

s.t.mfy-mf,_=0

with: 0,=0.25% 0;=25%
8 5 % % % _,
a0 o o o
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2nd Pillar
Definition of a suitable volatility grid
summarizing:
diffusive GARCH to detect
management failures
X
automati asset manager -

"

given n*=7

e )

0,<03<<a; \i=2

MediumLow

Moo st mfy-mf,_ =0

Medium-High 4004
High 10.00%
Very High 2500%
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Three-pillars approach:

1% Pillar: unbundling and performance scenarios
2nd Pillar: the degree of risk

31 Pillar: recommended investment time horizon
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The rec ded investment time horizon

for performance target products the recommended minimum
investment horizon is inherent to their financial engineering, as
the recommended investment horizon is equal to the period of
validity (or the time to maturity) of their target

The payoff at maturity uniquely identifies
the time when the potential returns are optimized

€3 CONSOB 5

3rd Pillar

The rec ded investment time horizon

The use of solutions aimed at ensuring the liquidity and/or
marketability of a return target product changes its risk-return
profile and its recommended investment time horizon

The event to study from a probabilistic point of view
transforms into:

The investment recovers the initial costs and
off-sets the running costs at least once

that can be calculated through the concept of

First Passage Time

The “mini ” rec ded investment time horizon

€3 CONSOB 39

3rd pillar

The “mini ” rec ded investment time horizon

For risk target products, the natural way to define a cost
recovery event is also:

The investment recovers the initial costs and
off-sets the running costs at least once

that can be calculated through the concept of

First Passage Time

€3 CONSOB "




3rd Pillar

CN = Nominal Capital

First Passage Time:
First time (expressed in years) such that the value of the Invested
Capital (CI) recovers the initial costs and off-sets the running costs.

Time (years)

€3 CONSOB
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3rd Pillar

Flilar

€3 CONSOB

The probability of the event:

The investment recovers the initial costs and off-sets the running
costs at least once

given a confidence level «, uniquely identifies a time 7" on the
cumulative distribution function of the first passage times, i.e.:

T ={ rew #f <7] =af
where
£ =inflreR*:cI, > CN]

is the first passage time

3rd Pillar

€3 CONSOB

i
Time (years)

3rd Pillar

i Pl

2. Derivation of the cumulative distribution function of the first passage times:

s |

3rd Pillar

i Pl

3. The confidence level « uniquely identifies 7” on the cumulative distribution
function of the first passage times:

‘ Vo 42

3 Pillar

0 Pl

3. The discretization step is relevant in the determination of the cumulative
probability function, conditioning the identification of the time horizon, given a
fixed level of confidence:

e s e
; ; > Time (years)
€2 CONSOB » €2 CONSOB * €2 CONSOB &
3rd pillar 3rd Pillar 3rd pillar
U Plllar Flilar Connection between probability, volatility and costs
"I When many probability distribution functions are considered, letting varying
volatilities and costs, the problem of correctly identifying a set of minimum Anyway, the recommended minimum investment
thresholds arises: time horizon...
First passage times for the break-even barrier are monitored at
. N infinitesimal time intervals:
"=\ TeR P <71] = |
- 750
- r={rew B <1] =af
.... Must be coherent with the principle 2r
. CI, CN CN
Pl <7]= N | = | |+ == —d| &
+ VOLATILITY + TIME HORIZON CN cI, cr,
I P
. wees{7-or- Lot r
d,(x)=—— 77—
. 2 o ﬁ
The correct way to solve the problem is to set up an
operative procedure to select properly each threshold 1 711
according to the above principle N ( )= _‘- J— e? dz
B NN 1 N2m
; W indd (years)
a CUNSOB 97 98 9%
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3rd Pillar
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3rd Pillar

Connection between probability, volatility and costs

cr : recurrent costs
Asymptotic properties: T —o0

as a fixed %
dt —0
1 if (F— cr)Z % ?
lim P <7]=
Too z(,zlc,)i]
[EZ ’ if (7*0}*)<%o'z

3rd Pillar

Connection between probability, volatility and costs

Under our assumptions:

1 if (F-cr)= %
lim P <7]=
Tom

@,,

For a given level of costs, it is possible to analytically derive the
connection between volatility and time horizon

€3 CONSOB
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3rd Pillar
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Connection between probability, volatility and costs

T — o0,dt—0

FIRST ORDER
SENSITIVITY
ANALYSIS

2rer) |

_|—ale)y (NN
do o CI, \ CI,

E

-

102
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Connection between probability, volatility and costs

T — 0,dt—0

The existence of two alternative states of nature requires to verify

whether both of them make sense in financial terms under the risk-
neutral measure.

103

3rd Pillar

Connection between probability, volatility and costs

T — 0,dt—0
2F

dp 7P (eNY N
=|-4—In| — | —
do o CI, \ CI,

Being running costs a specific feature of any financial product they
would interfere with the task of identifying which of the two

conditions has a sound financial meaning. Therefore, they will be
temporarily neglected.

€3 CONSOB
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3rd pillar

€3 CONSOB

Connection between probability, volatility and costs

T — c0,dt—0

>
27

dap 7 (eNY N
—=|-4—In| — | —
do o CI, \ CI,

markets,
between volatility and time horizon.

Since it is safe to assume a positive interest rate r in financial
only condition 1. correctly captures the connection

105
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Connection between probability, volatility and costs

T — o0,dt—0
2F

dP 7o (enYenYy
—=|-4—In| —
do e CI, \ CI,

As T—oo condition 1. implies that the cumulative distribution function
P is a strictly decreasing function of the volatility, i.e.:

Vo,0,eR",0,>0, :>P(o‘l)<P(0',.)|

3rd Pillar

Connection between probability, volatility and costs

T — 00,dt—0

>
27

dP Fo(enYen) !
—=|—4—n| —
do o CI, \ CI,

In other words, for a given a confidence level, as the volatility
grows, the recommended investment time horizon increases as well:

+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

€3 CONSOB
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3rd pillar

€3 CONSOB

Connection between probability, volatility and costs

T — o0,dt—0
dP 4 7

Furthermore, condition 1. alone is sufficient to guarantee a minimum
time 7" beyond which the following strong condition holds:

+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON




3rd Pillar

Connection between probability, volatility and costs

T — 00,dt—>0

£= _4 _fr)ln (ol
do o CI,

Generalizing...

3rd Pillar

Second Order
Sensitivity
Analysis

Connection between probability, volatility and costs

T — o0,dt—0

2(r-er)

2 R =
d ]Z =i‘(7—cr)ln NN . 1+Lz”)1n o
do® o CI, \ CI, o CI,

2:
d12>0 »
o

r= 0
(F=cr)>0=> y

3rd Pillar

Connection between probability, volatility and costs

T — o0,dt—0

1.

(?—cr)>0©£<0
do

_ d°P
—er)>0
(F-cr)>0=> 4

2
o

>0

Summarizing the results of the asymptotic analysis in continuous time:
* As T —oo, for given a confidence level, more volatility implies a larger
recommended investment time horizon
« It is always possible to find a minimum and finite time 7%, beyond which the
strong condition
+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

holds
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|| DETERMINATION OF THE INVESTMENT TIME HORIZON | DETERMINATION OF THE INVESTMENT TIME HORIZON " DETERMINATION OF THE INVESTMENT TIME HORIZON
General Framework: FIRST ORDER SENSITIVITY ANALYSIS I L7
e ”
dl( —0 ) di—0 i
— inte e '
. = P(T,O‘) At a finite lu.ne T,} meWnr the first order that allows to state |
= ap (o) the core relationship
J(hu-)n)@—«) (F-cr)>0e lim—="2<0 - . . ol
:fr’) e o + volatility + time horizon
l(r—wv)w:d =0 (77")>0:nmazp(r.a)>0 I
= =S is then specified in the following form:
0P (T - .
. — . . . = U=l iy
In order to determine effectively the investment time horizon, oo L:; >
it is necessary to abandon the asymptotic environment and to *
shift the analysis of condition 1. in a finite time framework. op(7.0) I
9 <o i =T
oo |
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FIRST ORDER SENSITIVITY ANALYSIS

aP(T,0)

Plot of the function
do

in a space (c,T)

axy 7,
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SECOND ORDER SENSITIVITY ANALYSIS |

Given the monotonicity condition of the probability distribution with respect to
volatility, i.e.:

|Vo',,o'j eR',0, >0, ﬁP(w,o'j)<P(w,o',)

In order to fulfill this condition, it’s necessary to restrict the analysis in the
region where the probability function is strictly increasing, i.e.:

&P(T,o .. .

# > 0= T, increasing
do” .

r-1;

e . :
e T, decreasing
o’ :

Tt
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Plot of the function 31‘;(7;") in a space (o,T)
=
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| SECOND ORDER SENSITIVITY ANALYSIS |

Having defined the maximum time in the form:

T.el. 00’

{cf e (T,

The sufficient condition of the 2° order is specified as:

... 0°P(T.0)
T, if ——=— =20
ot | .
= 21
T if 2P(T.0) P(T.'J) <0
do* -
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Plot of the function 31"(71»“)
=

el

in a space (0,T)
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The rechinsmizlial

Bietisfesdt Horlnon

P synthesis, at a finite time T:

) _ ot o) _|[oPl o),
|

oo oo’

LOCAL MINIMUM
W w( {:)“ o =

o T T TR W R e i e e

o
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+ VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons

STRONG CONVERGENCE LEMMA for times

Given a sequence of financial products F, with volatility o; and recalling the first order
sufficient condition:

. { 5P(T,o') } .
T, =max< T, .T:———==0;, VoeR
oo

the first order sufficient condition can be specified for the class of products F; in the
following form:

€ . € — €j

7Rl o)< Pl o))

I therefore holds the following strong convergence relation with respect to times.
. P
lim 7,/ =T,

ey O i

where £,=(0,,,-0,)>0.

3rd pillar

121

The reciimniim il
B sdtmien o &

€3 CONSOB

+ VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons

In order to have an intuitive explanation of the lemma, let’s consider the
following volatility levels:

e - -
E o+eceR
and the respective probability distribution functions, i.e.
— —— -

| Pl <7] |

Pl <7]
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons

o, <1]
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons

In synthesis...
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons

The time is
characterized
on the curve of
minimum
times..
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons

Generalizing the lemma for all o, the following characterization of
the first order sufficient condition is given:

——

——

o+e,ceR

—

4'

Pl <7]

.
ot =
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons

P(1,0) ) FP(T.0)

=

=0
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to determine a sequence of consistent time horizons

Weak
monotonicity
condition of
times w.r.t.
volatility
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FIRST ORDER SUFFICIENT CONDITION
to determine a sequence of consistent time horizons

Formally, for any sequence of products with volatility o, defined in a given
class of costs (ci,cr):

Strong convergence lemma ‘Weak monotonicity condition of

for times times w.r.t. volatility
First order sufficient condition Second order sufficient condition
e — .
i =l,A..N,aM >0,
7= 7, T el Pl <7]=Rl <7]ear )
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