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Rebuilding the investors’ confidence through risks 
disclosure

COMMISSIONE  NAZIONALE 
PER LE SOCIETÀ E LA BORSA 

Marcello Minenna – Head of Quantitative Analysis Unit, Consob

Opinions expressed may not reflect the ones of Consob
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Syllabus

Preliminaries

Three-pillars approach:

1st Pillar: unbundling and performance scenarios

2nd Pillar: the degree of risk

3rd Pillar: recommended investment time horizon
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Non-equity Investment products: definition

Preliminaries
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“Benchmark” 
products

“Risk target” 
products

“Return target” 
products

Preliminaries
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Transparency.

We propose a new proactive approach to disclosure.

[…] all disclosures and other communications with consumers be reasonable:
balanced in their presentation of benefits, and clear and conspicuous in their
identification of costs, penalties, and risks.

Mandatory disclosure forms should be clear, simple, and concise.

Moreover, reasonableness does not mean a litany of every conceivable risk,
which effectively obscures significant risks. It means identifying conspicuously
the more significant risks. It means providing consumers with disclosures that
help them to understand the consequences of their financial decisions.

Preliminaries

FINANCIAL REGULATORY
REFORM: A NEW FOUNDATION
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Traditional narrative
description of all 

possible risks 
associated with

a financial product

Synthetic indicators 
robust,

objective 
and backward 

verifiable

Preliminaries

The transparency on the risk profile of non-equity investment
products is based on three synthetic indicators (three pillars) –
defined through the development of specific quantitative
methods – in order to allow investors to take informed
investment decisions.
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The key qualitative information is made objective by using a three-pillars
approach based on quantitative measures.

RETURNS RISKS INVESTMENT HORIZON

Preliminaries
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RETURNS

RISKS

INVESTMENT HORIZON

(less than 3 years)

(medium-low)

(maximum return)

Time goal:
liquidity/investment horizon

Risk profile:
risk limit in terms of downside

Return goal:
target returns

Investor decisions as a sequential filtering problem:

Preliminaries
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Syllabus

Preliminaries

Three-pillars approach:

1st Pillar: unbundling and performance scenarios

2nd Pillar: the degree of risk

3rd Pillar: recommended investment time horizon
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In “return target” products (e.g. corporate bonds) the connection
between the pricing at time zero and the pricing at maturity is
evident, as the probability table is a necessary step to obtain the
unbundling of the price of the product at time 0.

Fair 
Value

Pricing
at time zero

Possible
outcomes

Pricing
at maturity

1st Pillar

11

5 year fixed-rate bond
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1st Pillar

12

t (year)

The final values of the bond at the end of the 5th year provide
the probability distribution of potential returns (so-called
pricing at maturity).
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Possible outcomes

Pricing at maturity

1st Pillar
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Possible outcomes

Pricing at maturity

1st Pillar

The final values of the bond at the end of the 5th year provide
the probability distribution of potential returns (so-called
pricing at maturity).
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Possible outcomes

Pricing at maturity

The final values of the bond at the end of the 5th year provide
the probability distribution of potential returns (so-called
pricing at maturity).

1st Pillar

T=5 years

Probability distribution of the final values of the bond
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Possible outcomes

Pricing at maturity

The informative content of the entire probability distribution is
very complex to handle for the average retail investor.

1st Pillar

T=5 years

Probability distribution of the final values of the bond
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The shape of the probability distribution of potential returns is
obviously dependent from the model’s assumption.

1st Pillar

T=5 years

Bond value (base 100)

Probability distribution of the final values of the bond

HW IR Model
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The shape of the probability distribution of potential returns is
obviously dependent from the model’s assumption.

1st Pillar

T=5 years

Bond value (base 100)

Probability distribution of the final values of the bond

HW IR Model

CIR IR Model
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Fair 
value

Probability distribution of the
final values of the bond

T

DISCOUNTED
EXPECTED

VALUE

1st Pillar

STANDARD
SOLUTION
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Probability distribution of 
the risk-free asset

Probability distribution of 
the risk-free asset

Probability distribution of 
the risky asset

T T

risk-free asset

Theoretical value of
the bond-like component

Theoretical value of
the bond-like component

t0 risky asset

Theoretical value of the 
derivative component

t0

Fair 
value

Probability distribution of the
final values of the bond

T

PORTFOLIO 
REPLICATION 

PRINCIPLE

1st Pillar

CONSOB
REGULATION
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Fair 
value

A Theoretical value of the bond-like component …

B Theoretical value of the derivative component …

C = A + B Fair value …

D Explicit costs …

E Implicit costs …

F = C + D + E Issue price 100

risk-free asset t0 risky asset

Theoretical value of the 
derivative component

t0

Theoretical value of
the bond-like component

Theoretical value of
the bond-like component

1st Pillar

CONSOB
REGULATION

21

1st Pillar

It’s useful to explore a different representation of the information
contained in the probability distribution which could be useful for
the average investor

CONSOB
REGULATION

T=5 years

Bond value (base 100)

Probability distribution of the final values of the bond
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In order to provide the investor with a representation fair, easy to
understand and resilient to the model’s risk, a simple rescaling
with respect to the risk-neutral measure numeraire is presented

1st Pillar

T=5 years

Bond value (base 100)

Probability distribution of the final values of the bond

CONSOB
REGULATION
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1st Pillar

T=5 years

Bond value (base 100)

Probability distribution of the cash account (risk neutral numeraire)

CONSOB
REGULATION

In order to provide the investor with a representation fair, easy to
understand and resilient to the model’s risk, a simple rescaling
with respect to the risk-neutral measure numeraire is presented
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The superimposition of the product’s probability distribution with the
cash account naturally defines three different events which are
effectively meaningful for the investor.

1st Pillar

T=5 years

Bond value (base 100)

Probability distribution of the final values of the bond and the cash account

CONSOB
REGULATION
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1st Pillar

T=5 years

Bond value (base 100)

Probability distribution of the final values of the bond and the cash account

The 
performance 

is positive and 
in line with
the risk-free 

asset

The 
performance 

is positive and 
higher than
the risk-free 

asset

The 
performance 

is positive and 
lower than 

the risk-free 
asset

CONSOB
REGULATION
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1st Pillar

T=5 years

Bond value (base 100)

Probability distribution of the final values of the bond and the cash account

The 
performance 

is positive and 
in line with
the risk-free 

asset

The 
performance 

is positive and 
higher than
the risk-free 

asset

The 
performance 

is positive and 
lower than 

the risk-free 
asset

The 
performance
is negative

CN0

CONSOB
REGULATION
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1st Pillar

SCENARIOS PROBABILITY MEDIAN 
VALUES

The performance is negative % €

The performance is positive but 
lower than the risk-free asset % €

The performance is positive and 
in line with the risk-free asset % €

The performance is positive and 
higher than the risk-free asset % €
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Connection between the pricing at time zero and the pricing
at the end of recommended investment horizon

1:1 Relationship

Table of probabilistic performance scenarios

End of the recommended investment horizon

Financial investment table

Time Zero

1st Pillar

SCENARIOS PROBABILITY MEDIAN 
VALUES

The performance is negative % €

The performance is positive but 
lower than the risk-free asset % €

The performance is positive and 
in line with the risk-free asset % €

The performance is positive and 
higher than the risk-free asset % €

A
Theoretical value of 
the bond-like 
component

…

B
Theoretical value of
the derivative
component

…

C = A + B Fair value …

D Explicit costs …

E Implicit costs …

F = C + D + E Issue price 100
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Model Risk Assessment

I II

For Time Horizons greater than 1 year…..

The recommended time horizon has a significant
influence on the choice of the model

1st Pillar

t

30

HESTON

Stochastic Volatility Model

Many possible choices…

1st Pillar

Model Risk Assessment

The recommended time horizon has a significant
influence on the choice of the model

I II III IV

MERTON

Jump Diffusion Model

CARR MADAN CHANG

Variance Gamma Model

BARNDORFF NIELSEN

NIG Model
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Step 2: Calculation of the Probability Distribution of the Invested Capital at 
the end of recommended time horizon

Heston Merton

1st Pillar

V G NIG
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Step 2: Calculation of the Probability Distribution of the Invested Capital at 
the end of recommended time horizon

Probability Distribution
of the Risk-Free Asset

HESTON

1st Pillar

VG

MERTON

NIG
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Step 3: Probabilistic comparison with the Risk-Free Asset

Analysing the probability distributions…

1st Pillar

Heston Merton V G NIG
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… the following output is obtained:

1st Pillar

Step 3: Probabilistic comparison with the Risk-Free Asset

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

46.61
%

€
90.50

The 
performance is 
positive but 
lower than the 
risk-free asset

3.39% € 101.26

The 
performance is 
positive and in 
line with the 
risk-free asset

33.28
%

€ 112.19

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.72
%

€ 139.93

Heston Merton V G NIG

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

42.695
%

€
89.26

The 
performance is 
positive but 
lower than the 
risk-free asset

4.74% € 102.54

The 
performance is 
positive and in 
line with the 
risk-free asset

35.7% € 110.09

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.86
%

€ 142.65

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

43.91
%

€
91.25

The 
performance is 
positive but 
lower than the 
risk-free asset

5.23% € 102.1

The 
performance is 
positive and in 
line with the 
risk-free asset

36.8% € 109.24

The 
performance is 
positive and 
higher than 
the risk-free 
asset

14.06
%

€ 141.77

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

48.1%
€

93.40

The 
performance is 
positive but 
lower than the 
risk-free asset

2.6% € 101.91

The 
performance is 
positive and in 
line with the 
risk-free asset

34.28
%

€ 114.23

The 
performance is 
positive and 
higher than 
the risk-free 
asset

15.02
%

€ 142.13
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Assessing the model risk:

1st Pillar

Step 3: Probabilistic comparison with the Risk-Free Asset

Scenarios
Probabi

lity
Median
Values

The 
performance is
negative

46.61
%

€
90.50

The 
performance is 
positive but 
lower than the 
risk-free asset

3.39%
€

101.26

The 
performance is 
positive and in 
line with the 
risk-free asset

33.28%
€

112.19

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.72%
€

139.93

Heston Merton V G NIG

Scenarios
Probabilit

y

Medi
an

Valu
es

The 
performance is
negative

42.695
%

€
89.26

The 
performance is 
positive but 
lower than the 
risk-free asset

4.74%
€

102.5
4

The 
performance is 
positive and in 
line with the 
risk-free asset

35.7%
€

110.0
9

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.86%
€

142.6
5

Scenarios
Probabili

ty

Media
n

Value
s

The 
performance is
negative

43.91
%

€
91.25

The 
performance is 
positive but 
lower than the 
risk-free asset

5.23%
€

102.1

The 
performance is 
positive and in 
line with the 
risk-free asset

36.8%
€

109.24

The 
performance is 
positive and 
higher than 
the risk-free 
asset

14.06%
€

141.77

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

48.1
%

€
93.40

The 
performance is 
positive but 
lower than the 
risk-free asset

2.6% € 101.91

The 
performance is 
positive and in 
line with the 
risk-free asset

34.28
%

€ 114.23

The 
performance is 
positive and 
higher than 
the risk-free 
asset

15.02
%

€ 142.13

4.7%<
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1st Pillar

Step 3: Probabilistic comparison with the Risk-Free Asset

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

46.61
%

€
90.50

The 
performance is 
positive but 
lower than the 
risk-free asset

3.39
%

€ 101.26

The 
performance is 
positive and in 
line with the 
risk-free asset

33.28
%

€ 112.19

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.72
%

€ 139.93

Heston Merton V G NIG

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

42.695
%

€
89.26

The 
performance is 
positive but 
lower than the 
risk-free asset

4.74
%

€ 102.54

The 
performance is 
positive and in 
line with the 
risk-free asset

35.7% € 110.09

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.86
%

€ 142.65

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

43.91
%

€
91.25

The 
performance is 
positive but 
lower than the 
risk-free asset

5.23
%

€ 102.1

The 
performance is 
positive and in 
line with the 
risk-free asset

36.8% € 109.24

The 
performance is 
positive and 
higher than 
the risk-free 
asset

14.06
%

€ 141.77

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

48.1%
€

93.40

The 
performance is 
positive but 
lower than the 
risk-free asset

2.6
%

€ 101.91

The 
performance is 
positive and in 
line with the 
risk-free asset

34.28
%

€ 114.23

The 
performance is 
positive and 
higher than 
the risk-free 
asset

15.02
%

€ 142.13

2.7%<Assessing the model risk:
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1st Pillar

Step 3: Probabilistic comparison with the Risk-Free Asset

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

46.61
%

€
90.50

The 
performance is 
positive but 
lower than the 
risk-free asset

3.39% € 101.26

The 
performance is 
positive and in 
line with the 
risk-free asset

33.2
8%

€ 112.19

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.72
%

€ 139.93

Heston Merton V G NIG

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

42.695
%

€
89.26

The 
performance is 
positive but 
lower than the 
risk-free asset

4.74% € 102.54

The 
performance is 
positive and in 
line with the 
risk-free asset

35.7
%

€ 110.09

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.86
%

€ 142.65

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

43.91
%

€
91.25

The 
performance is 
positive but 
lower than the 
risk-free asset

5.23% € 102.1

The 
performance is 
positive and in 
line with the 
risk-free asset

36.8
%

€ 109.24

The 
performance is 
positive and 
higher than 
the risk-free 
asset

14.06
%

€ 141.77

Scenarios
Proba
bility

Median
Values

The 
performance is
negative

48.1%
€

93.40

The 
performance is 
positive but 
lower than the 
risk-free asset

2.6% € 101.91

The 
performance is 
positive and in 
line with the 
risk-free asset

34.2
8%

€ 114.23

The 
performance is 
positive and 
higher than 
the risk-free 
asset

15.02
%

€ 142.13

3.7%<Assessing the model risk:
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1st Pillar

Step 3: Probabilistic comparison with the Risk-Free Asset

Scenarios
Probabi

lity
Median
Values

The 
performance is
negative

46.61%
€

90.50

The 
performance is 
positive but 
lower than the 
risk-free asset

3.39%
€

101.26

The 
performance is 
positive and in 
line with the 
risk-free asset

33.28%
€

112.19

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.72
%

€
139.93

Heston Merton V G NIG

Scenarios
Probabi

lity
Median
Values

The 
performance is
negative

42.695
%

€
89.26

The 
performance is 
positive but 
lower than the 
risk-free asset

4.74%
€

102.54

The 
performance is 
positive and in 
line with the 
risk-free asset

35.7%
€

110.09

The 
performance is 
positive and 
higher than 
the risk-free 
asset

16.86
%

€
142.65

Scenarios
Probabi

lity
Median
Values

The 
performance is
negative

43.91%
€

91.25

The 
performance is 
positive but 
lower than the 
risk-free asset

5.23% € 102.1

The 
performance is 
positive and in 
line with the 
risk-free asset

36.8%
€

109.24

The 
performance is 
positive and 
higher than 
the risk-free 
asset

14.06
%

€
141.77

Scenarios
Probabi

lity
Median
Values

The 
performance is
negative

48.1%
€

93.40

The 
performance is 
positive but 
lower than the 
risk-free asset

2.6%
€

101.91

The 
performance is 
positive and in 
line with the 
risk-free asset

34.28%
€

114.23

The 
performance is 
positive and 
higher than 
the risk-free 
asset

15.02
%

€
142.13

1.2%<Assessing the model risk:
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Syllabus

Preliminaries

Three-pillars approach:

1st Pillar: unbundling and performance scenarios

2nd Pillar: the degree of risk

3rd Pillar: recommended investment time horizon
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2nd Pillar

Volatility of the product’s simulated returns

Volatility is the most immediate risk measure and 
it has a one-to-one relationship with whatever loss measure 

(VaR, ES, etc.)

t
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2nd Pillar

DEGREE OF RISK

Volatility of the product’s simulated returns

t
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2nd Pillar

DEGREE OF RISK

Volatility of the product’s simulated returns

t

MEASUREMENT:
product’s positioning inside 

a grid of n volatility intervals

REPRESENTATION:
mapping of any volatility interval into a 

corresponding qualitative risk class

RISK
RISK
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2nd Pillar

t

Products with the same risk budget
must have the same degree of risk

44

2nd Pillar

Medium

Medium-High

Volatility intervals have to be suitably calibrated
in order to avoid wrong risk representations

45

2nd Pillar

Medium

Medium-High

Volatility intervals have to be suitably calibrated
in order to avoid wrong risk representations
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2nd Pillar

Looking for the number of intervals 
(so-called “n-tuple of risk classes”) 

allowing the best compromise between 
investors’ comprehension and 

detail of the information conveyed

Hypothesis
NUMBER OF INTERVALS SPANNED: 

5, 6 or 7

Definition of a suitable volatility grid
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2nd Pillar

5 risk classes

6 risk classes

7 risk classes

Low
Medium-Low

Medium
Medium-High

High
Very High

Low
Medium-Low

Medium
Medium-High

High

Low
Medium-Low

Medium
Medium-High

High
Very High

Very Low

Hypothesis
NUMBER OF INTERVALS SPANNED: 

48

2nd Pillar

Definition of a suitable volatility grid

Minimizing the chance for an asset manager 
of overcoming not intentionally 

its risk budget, i.e. the volatility interval
(so-called “management failure”)
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2nd Pillar

ASSUMPTION

25% AS THE LOWER BOUND 
OF THE LAST VOLATILITY INTERVAL

…corresponding to a percentage loss of about 50% 
of the invested capital over a 1-year time horizon

Definition of a suitable volatility grid
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2nd Pillar

1st INTUITION

The optimal set of volatility intervals for a given n-tuple
of risk classes requires to solve a stochastic non linear programming 

problem (i.e. minimize the chance of a “management failure”) 

Definition of a suitable volatility grid

In order to analise the management failures it has to be studied the 
behavior of an automatic asset manager that has a specific risk budget,

identified by a given volatility interval 
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2nd Pillar

Hypothesis:

Stochastic volatility model where the automatic 
asset manager is “mean-reverting”:

The automatic asset manager:
• has no systematic preference for upwards or downwards deviations

from the mean  symmetric distribution for the volatility

• in order to minimize the migration risk, keeps the product volatility
far from the bounds of the interval probability decay over the tails

Automatic Asset Manager
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2nd Pillar

Simulating the trajectories of the volatility 
realized by the automatic asset manager

t

t

Product
value

Annualized volatility 
of daily returns

Automatic Asset Manager
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2nd Pillar

2nd INTUITION

In order to analise the management 
failures volatility prediction 

intervals have to be determined.
In this way, the ability of the 

automatic asset manager to remain 
within his risk budget

can be measured

Definition of a suitable volatility grid

t

G
min

G
max

t
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2nd Pillar

Automatic Asset Manager

Weak Convergence 
Theorem of Discrete Markov 

Chains to Diffusions

Hypothesis:

GARCH diffusive models 
to measure the ability of 

the automatic asset 
manager to remain within 

his risk budget
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O.U.
process

2nd Pillar

GARCH Diffusive Models: the Volatility Prediction Interval

Automatic Asset Manager

56

the discrete 
process 
becomes:

2nd Pillar

GARCH Diffusive Models: the Volatility Prediction Interval

Automatic Asset Manager

57

likelihood 
function:

where:

2nd Pillar

GARCH Diffusive Models: the Volatility Prediction Interval

Automatic Asset Manager

58

shape of the 
associated 

log-likelihood 

2nd Pillar

GARCH Diffusive Models: the Volatility Prediction Interval

Automatic Asset Manager
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2nd Pillar

GARCH Diffusive Models: the Volatility Prediction Interval

0 and 1 
estimates

Automatic Asset Manager

60

the estimated parameters enter in the bounds 
of the volatility prediction interval

2nd Pillar

GARCH Diffusive Models: the continuous limit of the M-GARCH(1,1)

Automatic Asset Manager

61

2nd Pillar

G
max,t(3)

t

t

G
min,t(2)

G
max,t(2)

G
max,t(1)

G
min,t(1)

t(3)t(2)t(1)

Hypothesis:

GARCH diffusive models 
to measure the ability of 

the automatic asset 
manager to remain within 

his risk budget

G
min,t(3)

Automatic Asset Manager
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2nd Pillar

t

t

G
min

G
max

ADAPTIVITY Hypothesis:

GARCH diffusive models 
to measure the ability of 

the automatic asset 
manager to remain within 

his risk budget

Automatic Asset Manager

63

2nd Pillar

GARCH-based volatility prediction 
intervals to identify the 

“management failures” of the 
automatic asset manager

t

G
min

G
max

t

Automatic Asset Manager
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2nd Pillar

Definition of a suitable volatility grid

3rd INTUITION

The optimal set of volatility intervals must allow a similar number of 
“management failures” to the automatic asset managers belonging to 

different risk classes of a given n-tuple:

NO INCENTIVE TO PICK ANY SPECIFIC CLASS

65

2nd Pillar

NO INCENTIVE TO PICK ANY SPECIFIC CLASS

1

i

i

m 
 



Let [σ1,σ2] and [σ3,σ4] be two volatility intervals having the same
multiplier m, i.e.:

then, the two intervals have the same number of “management
failures”, that is the same number of breaches of the GARCH-based
volatility prediction intervals.

RESCALING LEMMA for volatility intervals

2 4

1 3

m  
 

 

25%12.5%6.25%3.125%
σ

0%

66

2nd Pillar

Volatility Intervals Multiplier

For whatever n-tuple of classes the 1st interval
cannot respect the multiplier:

25%12.5%6.25%3.125%

σ

0% 1.5625%

25%12.5%6.25%3.125%

σ

0%

5n 

6n 

6.25=3.125*2 12.5=6.25*2 25=12.5*2

2m
3.125=1.5625*2

Remark

67

2nd Pillar

Definition of a suitable volatility grid

4th INTUITION

The optimal set of volatility intervals must be
associated with  increasing levels of losses

+ RISK + LOSSES

VOLATILITY INTERVALS MUST HAVE 
AN INCREASING WIDTH
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The requirement of increasing width holds for all the intervals 
(hence including the 1st ) if and only if m>2

5n 

=12.5

2m
=6.25=3.125=3.125

5n 1.5m

5n 


2.5m
25%10%4%1.6%0%

25%12.5%6.25%3.125%0%



=15=6=2.4=1.6

=9.33=5.56=3.71=7.4


25%16.67%11.11%7.4%0%
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The higher is the multiplier 
the wider is the subinterval that ends with 25%

and the narrower is the first class

5n 

=12.5

2m
=6.25=3.125=3.125

5n 


2.5m
25%10%4%1.6%0%

25%12.5%6.25%3.125%0%



=15=6=2.4=1.6

5n 


3m
25%8.33%2,78%0.93%0%

=16,67=5,55=1.85=0.93
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m

0% 2,70% 5,67% 11,90% 25% 2,1
0% 2,35% 5,17% 11,36% 25% 2,2
0% 2,05% 4,73% 10,87% 25% 2,3
0% 1,81% 4,34% 10,42% 25% 2,4
0% 1,60% 4,00% 10,00% 25% 2,5
0% 1,42% 3,70% 9,62% 25% 2,6
0% 1,27% 3,43% 9,26% 25% 2,7
0% 1,14% 3,19% 8,93% 25% 2,8
0% 1,03% 2,97% 8,62% 25% 2,9
0% 0,93% 2,78% 8,33% 25% 3,0

m
0% 1,29% 2,70% 5,67% 11,90% 25% 2,1
0% 1,07% 2,35% 5,17% 11,36% 25% 2,2
0% 0,89% 2,05% 4,73% 10,87% 25% 2,3
0% 0,75% 1,81% 4,34% 10,42% 25% 2,4
0% 0,64% 1,60% 4,00% 10,00% 25% 2,5
0% 0,55% 1,42% 3,70% 9,62% 25% 2,6
0% 0,47% 1,27% 3,43% 9,26% 25% 2,7
0% 0,41% 1,14% 3,19% 8,93% 25% 2,8
0% 0,35% 1,03% 2,97% 8,62% 25% 2,9
0% 0,31% 0,93% 2,78% 8,33% 25% 3,0

m
0% 0,61% 1,29% 2,70% 5,67% 11,90% 25% 2,1
0% 0,49% 1,07% 2,35% 5,17% 11,36% 25% 2,2
0% 0,39% 0,89% 2,05% 4,73% 10,87% 25% 2,3
0% 0,31% 0,75% 1,81% 4,34% 10,42% 25% 2,4
0% 0,26% 0,64% 1,60% 4,00% 10,00% 25% 2,5
0% 0,21% 0,55% 1,42% 3,70% 9,62% 25% 2,6
0% 0,17% 0,47% 1,27% 3,43% 9,26% 25% 2,7
0% 0,15% 0,41% 1,14% 3,19% 8,93% 25% 2,8
0% 0,12% 0,35% 1,03% 2,97% 8,62% 25% 2,9
0% 0,10% 0,31% 0,93% 2,78% 8,33% 25% 3,0

When m is too high the meaningfulness
of the set of volatility intervals is  compromised:

Hypothesis:
2<m<3

5 risk classes

6 risk classes

7 risk classes
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It is now possible to perform the 
minimization process of the management failures.

Main results: For whatever n-tuple of classes there is a trade-off

as m increases the number of management failures of 

m*=2.5 achieves the best balance of this trade-off

the 1st class decreases the other classes class increases

m*=2.5 identifies the optimal set of volatility intervals
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m

0% 2,70% 5,67% 11,90% 25% 2,1
0% 2,35% 5,17% 11,36% 25% 2,2
0% 2,05% 4,73% 10,87% 25% 2,3
0% 1,81% 4,34% 10,42% 25% 2,4
0% 1,60% 4,00% 10,00% 25% 2,5
0% 1,42% 3,70% 9,62% 25% 2,6
0% 1,27% 3,43% 9,26% 25% 2,7
0% 1,14% 3,19% 8,93% 25% 2,8
0% 1,03% 2,97% 8,62% 25% 2,9

m
0% 1,29% 2,70% 5,67% 11,90% 25% 2,1
0% 1,07% 2,35% 5,17% 11,36% 25% 2,2
0% 0,89% 2,05% 4,73% 10,87% 25% 2,3
0% 0,75% 1,81% 4,34% 10,42% 25% 2,4
0% 0,64% 1,60% 4,00% 10,00% 25% 2,5
0% 0,55% 1,42% 3,70% 9,62% 25% 2,6
0% 0,47% 1,27% 3,43% 9,26% 25% 2,7
0% 0,41% 1,14% 3,19% 8,93% 25% 2,8
0% 0,35% 1,03% 2,97% 8,62% 25% 2,9

m
0% 0,61% 1,29% 2,70% 5,67% 11,90% 25% 2,1
0% 0,49% 1,07% 2,35% 5,17% 11,36% 25% 2,2
0% 0,39% 0,89% 2,05% 4,73% 10,87% 25% 2,3
0% 0,31% 0,75% 1,81% 4,34% 10,42% 25% 2,4
0% 0,26% 0,64% 1,60% 4,00% 10,00% 25% 2,5
0% 0,21% 0,55% 1,42% 3,70% 9,62% 25% 2,6
0% 0,17% 0,47% 1,27% 3,43% 9,26% 25% 2,7
0% 0,15% 0,41% 1,14% 3,19% 8,93% 25% 2,8
0% 0,12% 0,35% 1,03% 2,97% 8,62% 25% 2,9

5 risk classes

6 risk classes

7 risk classes
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The choice between the different n-tuples depends on the 
regulator assessment about the best compromise between 
investors’ comprehension and detail of the information:

Consob 
choice:

n=6

74

Risk Classes
Volatility Intervals

σmin σmax

Low 0.01% 0.49%

Medium-Low 0.64% 1.59%

Medium 1.60% 3.99%

Medium-High 4.00% 9.99%

High 10.00% 24.99%

Very High 25.00% >25.00%

OUTPUT

2nd Pillar
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m*=2.5
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Syllabus

Preliminaries

Three-pillars approach:

1st Pillar: unbundling and performance scenarios

2nd Pillar: the degree of risk

3rd Pillar: recommended investment time horizon

76

In analytical terms, the probability of the event:

The investment recovers the initial costs and
off-sets the running costs at least once

can be calculated through the concept of

First Passage Time

3rd Pillar

The recommended investment time horizon

77

Time (years)

First Passage Time: 
First time (expressed in years) such that the value of the Invested
Capital (CI) recovers the initial costs and off-sets the running costs.

ci = Initial Costs

CN = Nominal Capital

3rd Pillar
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given a confidence level α, uniquely identifies a time T* on the
cumulative distribution function of the first passage times, i.e.:

where

is the first passage time

The probability of the event:

    TtTT ** :

 CNCItt t   :inf*

3rd Pillar

The investment recovers the initial costs and off-sets the running
costs at least once
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Time (years)

1. Calculation of the probability distribution of the first passage times:

3rd Pillar
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2. Derivation of the cumulative distribution function of the first passage times:

3rd Pillar

Time (years)

Volatility 4%

81

3. The confidence level α uniquely identifies T* on the cumulative distribution
function of the first passage times:

Time (years)

3rd Pillar

Volatility 4%
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3. The discretization step is relevant in the determination of the cumulative
probability function, conditioning the identification of the time horizon, given a
fixed level of confidence:

Time (years)

3rd Pillar
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When many probability distribution functions are considered, letting varying
volatilities and costs, the problem of correctly identifying a set of minimum 
thresholds arises:

Time (years)

3rd Pillar
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…. Must be coherent with the principle

+ VOLATILITY + TIME HORIZON

Anyway, the recommended minimum investment
time horizon…

    TtTT ** :

3rd Pillar
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…. Must be coherent with the principle

+ VOLATILITY + TIME HORIZON

Anyway, the recommended minimum investment
time horizon…

    TtTT ** :

3rd Pillar

The correct way to solve the problem is to set up an
operative procedure to select properly each threshold
according to the above principle
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First passage times for the break-even barrier are monitored at
infinitesimal time intervals:

    TtTT ** :
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 
















































0
2

12

0

0
2

*
2

CI
CNdN

CI
CN

CN
CIdNTt

crr


 
T

Tcrrx
xd



 





 


2

2
1log

2

0dt

  





x z
dzexN

2

2
1

2
1


3rd Pillar

Connection between probability, volatility and costs

87

Asymptotic properties:

0dt

T
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cr : recurrent costs
as a fixed %

Connection between probability, volatility and costs
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For a given level of costs, it is possible to analytically derive the
connection between volatility and time horizon

Under our assumptions:

0dt
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,T 0dt
FIRST ORDER

SENSITIVITY

ANALYSIS

Connection between probability, volatility and costs

3rd Pillar
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FIRST ORDER 
ASYMPTOTIC CONDITION
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,T 0dt

The existence of two alternative states of nature requires to verify
whether both of them make sense in financial terms under the risk-
neutral measure.

1.

2.
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
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,T 0dt

Being running costs a specific feature of any financial product they
would interfere with the task of identifying which of the two
conditions has a sound financial meaning. Therefore, they will be
temporarily neglected.
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,T 0dt

Since it is safe to assume a positive interest rate r in financial
markets, only condition 1. correctly captures the connection
between volatility and time horizon.
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,T 0dt

1.

2.
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   ijijji    ,,

As T→ condition 1. implies that the cumulative distribution function
P is a strictly decreasing function of the volatility, i.e.:

Connection between probability, volatility and costs

3rd Pillar

0cr 

94

,T 0dt
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In other words, for a given a confidence level, as the volatility
grows, the recommended investment time horizon increases as well:

+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

Connection between probability, volatility and costs
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,T 0dt

Furthermore, condition 1. alone is sufficient to guarantee a minimum
time T* beyond which the following strong condition holds:

+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON
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,T 0dt

Generalizing…
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,T 0dt
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Second Order
Sensitivity
Analysis
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Summarizing the results of the asymptotic analysis in continuous time:
• As T →, for given a confidence level, more volatility implies a larger

recommended investment time horizon
• It is always possible to find a minimum and finite time T*, beyond which the

strong condition
+VOLATILITY + RECOMMENDED INVESTMENT TIME HORIZON

holds
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In order to determine effectively the investment time horizon,
it is necessary to abandon the asymptotic environment and to
shift the analysis of condition 1. in a finite time framework.
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At a finite time T, the sufficient condition of the first order that allows to state
the core relationship

+ volatility + time horizon

is then specified in the following form:

 




 ,T
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T



T

0




0




  0,:
*

* 







TT
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

T
Plot of the function in a space (σ,T) 





 ,T

  0,





T

  0,





T
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





 




 0,:,max min
*





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 

 

*

*

2
*

2

2
*

2

,
0 increasing

,
0 decreasing

T T

T T

T
T

T
T



















 
 



 
 



Given the monotonicity condition of the probability distribution with respect to
volatility, i.e.:

   ijijji  ,,,,  

In order to fulfill this condition, it’s necessary to restrict the analysis in the
region where the probability function is strictly increasing, i.e.:

 
2

2 ,




 T
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

T
Plot of the function in a space (σ,T) 

2

2 ,




 T

  0,
2

2






T

  0,
2

2






T

 ,
0

T 






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Having defined the maximum time in the form:

 












 

0,: 2
max

2

*
max 





T
TT

The sufficient condition of the 2° order is specified as:

 

 
*

*

2
*

2

*

2

max 2

,
0

,
0

T T

T T

T
T if

T
T

T if

















  


 
   

 
2

2 ,




 T
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

T
Plot of the function in a space (σ,T) 

2
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



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  0,
2

2






T

  0,
2

2






T

maxT

 2
max

2

,
0

T 


 



 max ,

0
T 






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



  0,
2

*2






T  0,*






T

LOCAL MINIMUM

In synthesis, at a finite time T:
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Given a sequence of financial products Fj with volatility σj and recalling the first order
sufficient condition:

the first order sufficient condition can be specified for the class of products Fj in the
following form:

STRONG CONVERGENCE LEMMA for times

where

It therefore holds the following strong convergence relation with respect to times:

*

1

lim
j

j

j
jj

TT 






 *
min

,
max , : 0 ,    

T
T T T





 

     

   jj
j

j

j

j

j

j
TTT  






 ,,: 1  

  .01   jjj 
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In order to have an intuitive explanation of the lemma, let’s consider the
following volatility levels:

  ,   ,

and the respective probability distribution functions, i.e.:

 Tt  *
 Tt  

*
  Tt  

*

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 Tt  
*



 Tt  *


 Tt  
*



%6.0
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 Tt  
*



 Tt  *


 Tt  
*



ZOOM
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 Tt  
*

  Tt  *


 Tt  *
   Tt  

*

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*
T

*
T

 
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 Tt  
*



 Tt  *


 Tt  
*

 ZOOM
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 Tt  
*

  Tt  *


 Tt  *
   Tt  

*

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*
T

*
T 
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*
T

*
T

0

*
T 
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0

In synthesis..
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0
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0

In synthesis..

*
T

*

1.6%
5.1  yearsT

 


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0

The time is
characterized

on the curve of
minimum 
times..

%6.1



T

 






 




 0,:,max min
*





TTTT

minT
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Generalizing the lemma for all σ, the following characterization of
the first order sufficient condition is given:
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 Tt  *
 Tt  

*
  Tt  

*

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T 
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


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0

T 







maxT

 2
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
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

T

*
T

minT

%6.0
* *, 1,.., j i j ii j N if T T     

Weak
monotonicity
condition of
times w.r.t.

volatility

maxT
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Strong convergence lemma 
for times

First order sufficient condition

Weak monotonicity condition of
times w.r.t. volatility

Second order sufficient condition

Formally, for any sequence of products with volatility σj, defined in a given
class of costs (ci,cr):

      *
1

**
maxmin

**
1

1

1
:,,max

,,,...1









 jjj

jj

TtTtTTTTT

Nj

jj





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