10.8.2. Lebesgue integral for non-negative functions

Definition 10.47. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to [0, +\infty]$ be a non-negative function which belongs to the class $Meas(X, \mathcal{M}), ([0, +\infty], \overline{\mathbb{B}}_{[0, +\infty]})$. The *abstract integral or Lebesgue integral* of f on X with respect to μ , denoted by $\int_X f(x) d\mu(x)$, is defined as

$$\int_{X} f(x) \, d\mu(x) = \sup_{0 \le s(x) \le f(x)} \int_{X} s(x) \, d\mu(x) \tag{10.96}$$

and, by convention, $0 \times \infty = 0$.

Notation 10.10. Often, instead of denoting the abstract integral of *f* on X with respect to μ by $\int_X f(x) d\mu(x)$, one may write

$$\int_X f(x)\mu\left(dx\right)$$

 $\int_{\mathbf{X}} f \, d\mu$

or

Remark 10.7. Under Definition 10.47, the Lebesgue integral of a measurable non-negative function is a non-negative quantity, ie,

$$\int_X f(x) \, d\mu(x) \ge 0 \tag{10.97}$$

More specifically, it may be

$$\int_X f(x) d\mu(x) = +\infty$$
(10.98)

Remark 10.8 (Intuitive interpretation of the Lebesgue integral). Figures 10.2–10.5 provide an intuitive interpretation about the meaning of Equation (10.96) which defines the Lebesgue integral of a measurable non-negative function f. As a matter of fact, they show that this integral is actually the integral of the boundary of the sequence of simple functions $\{s_n\}_{n \in \mathbb{N}}$, which, under Equation (10.78), is punctually and monotonically convergent from below to function f.

Notation 10.11. Often, given the complete measure space $(\mathbb{R}, \mathbb{B}, \widetilde{m}_1)$ and given a non-negative function $f : \mathbb{R} \to [0, +\infty]$ which belongs to class $Meas((\mathbb{R}, \mathbb{B}), ([0, +\infty], \mathbb{B}_{[0, +\infty]}))$, the abstract integral of f on \mathbb{R} with respect to the Lebesgue measure, \widetilde{m}_1 , is expressed by denoting dx instead of $d\widetilde{m}_1(x)$, ie,

$$\int_{\mathbb{R}} f(x) \, d\widetilde{m}_1(x) \equiv \int_{\mathbb{R}} f(x) \, dx$$

Proposition 10.52. Let (X, \mathcal{M}, μ) be a measure space and let $f : X \to [0, +\infty]$ be a non-negative function which belongs to the class $Meas((X, \mathcal{M}), ([0, +\infty], \overline{\mathbb{B}}_{[0, +\infty]}))$,

then, given $E \subseteq X$, the following relation holds:

$$\int_{X} f(x) \, d\mu(x) = \int_{E} f(x) \, d\mu(x) + \int_{X \setminus E} f(x) \, d\mu(x) \tag{10.99}$$

Definition 10.48. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to [0, +\infty]$ be a non-negative function which belongs to the class $Meas((X, \mathcal{M}), ([0, +\infty], \overline{\mathbb{B}}_{[0, +\infty]}))$. For any $E \in \mathcal{M}$, the *abstract integral or Lebesgue integral of* f *on* E *with respect to* μ , denoted by $\int_E f(x) d\mu(x)$, is defined as

$$\int_{E} f(x) \, d\mu(x) := \int_{X} \mathbf{1}_{(E)}(x) f(x) \, d\mu(x) \tag{10.100}$$

and, by convention, $0 \times \infty = 0$.

Remark 10.9. If f(x) = 1 for all $x \in E, E \in M$, then one has

$$\int_{E} 1 \, d\mu(x) = \mu(E) \tag{10.101}$$

Proposition 10.53. Let (X, \mathcal{M}, μ) be a measure space, let E be a subset of X so that $E \in \mathcal{M}$ and let $f : E \to [0, +\infty]$ be a non-negative function which belongs to the class $Meas((E, \mathcal{M}_E), ([0, +\infty], \overline{\mathbb{B}}_{[0,+\infty]}))$. Also, let $(E, \mathcal{M}_E, \mu_E)$ be the measure space where μ_E is the restriction of measure μ to set E and \mathcal{M}_E is the restriction of the σ -algebra \mathcal{M} to set E^2 . Then the abstract integral of f on subset E of X with respect to measure μ_E , ie,

$$\int_{E} f(x) \, d\mu(x) = \int_{E} f(x) \, d\mu_{E}(x) \tag{10.102}$$

Corollary 10.18. Let (X, \mathcal{M}, μ) be a measure space, let E be a subset of X so that $E \in \mathcal{M}$ and let $f : E \to [0, +\infty]$ be a non-negative function which belongs to the class $Meas((E, \mathcal{M}_E), ([0, +\infty], \overline{\mathbb{B}}_{[0, +\infty]}))$. Then, if $\mu(E) = 0$, one has

$$\int_{E} f(x) \, d\mu(x) = 0 \tag{10.103}$$

²Alternatively, μ_E is the measure defined on the σ -algebra \mathcal{M}_E as in Equation (10.5); see Definitions 1.100 and 10.6, Notation 10.1 and Proposition 10.2