10.8.2. Lebesgue integral for non-negative functions

Definition 10.47. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow$ $[0,+\infty]$ be a non-negative function which belongs to the class $\operatorname{Meas}(X, \mathcal{M}),\left([0,+\infty], \overline{\mathbb{B}}_{[0,+\infty]}\right)$. The abstract integral or Lebesgue integral of f on X with respect to μ, denoted by $\int_{X} f(x) d \mu(x)$, is defined as

$$
\begin{equation*}
\int_{X} f(x) d \mu(x)=\sup _{0 \leq s(x) \leq f(x)} \int_{X} s(x) d \mu(x) \tag{10.96}
\end{equation*}
$$

and, by convention, $0 \times \infty=0$.
Notation 10.10. Often, instead of denoting the abstract integral of f on X with respect to μ by $\int_{X} f(x) d \mu(x)$, one may write

$$
\int_{X} f(x) \mu(d x)
$$

or

$$
\int_{X} f d \mu
$$

Figure 10.2 The construction of the Lebesgue integral - step 1.

Remark 10.7. Under Definition 10.47, the Lebesgue integral of a measurable non-negative function is a non-negative quantity, ie,

$$
\begin{equation*}
\int_{X} f(x) d \mu(x) \geq 0 \tag{10.97}
\end{equation*}
$$

More specifically, it may be

$$
\begin{equation*}
\int_{X} f(x) d \mu(x)=+\infty \tag{10.98}
\end{equation*}
$$

Remark 10.8 (Intuitive interpretation of the Lebesgue integral). Figures 10.210.5 provide an intuitive interpretation about the meaning of Equation (10.96) which defines the Lebesgue integral of a measurable non-negative function f. As a matter of fact, they show that this integral is actually the integral of the boundary of the sequence of simple functions $\left\{s_{n}\right\}_{n \in \mathbb{N}}$, which, under Equation (10.78), is punctually and monotonically convergent from below to function f.

Notation 10.11. Often, given the complete measure space $\left(\mathbb{R}, \widetilde{\mathbb{B}}, \widetilde{m}_{1}\right)$ and given a non-negative function $f: \mathbb{R} \rightarrow[0,+\infty]$ which belongs to class $\operatorname{Meas}\left((\mathbb{R}, \widetilde{\mathbb{B}}),\left([0,+\infty], \overline{\mathbb{B}}_{[0,+\infty]}\right)\right)$, the abstract integral of f on \mathbb{R} with respect to the Lebesgue measure, \widetilde{m}_{1}, is expressed by denoting $d x$ instead of $d \widetilde{m}_{1}(x)$, ie,

$$
\int_{\mathbb{R}} f(x) d \widetilde{m}_{1}(x) \equiv \int_{\mathbb{R}} f(x) d x
$$

Proposition 10.52. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow[0,+\infty]$ be a non-negative function which belongs to the class $\operatorname{Meas}\left((X, \mathcal{M}),\left([0,+\infty], \overline{\mathbb{B}}_{[0,+\infty]}\right)\right)$,

Figure 10.3 The construction of the Lebesgue integral - step 2.

Figure 10.4 The construction of the Lebesgue integral - step 3.

Figure 10.5 The construction of the Lebesgue integral - step 4.

then, given $E \subseteq X$, the following relation holds:

$$
\begin{equation*}
\int_{X} f(x) d \mu(x)=\int_{E} f(x) d \mu(x)+\int_{X \backslash E} f(x) d \mu(x) \tag{10.99}
\end{equation*}
$$

Definition 10.48. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow$ $[0,+\infty]$ be a non-negative function which belongs to the class $\operatorname{Meas}\left((X, \mathcal{M}),\left([0,+\infty], \overline{\mathbb{B}}_{[0,+\infty]}\right)\right)$. For any $E \in \mathcal{M}$, the abstract integral or Lebesgue integral of f on E with respect to μ, denoted by $\int_{E} f(x) d \mu(x)$, is defined as

$$
\begin{equation*}
\int_{E} f(x) d \mu(x):=\int_{X} \mathbf{1}_{(E)}(x) f(x) d \mu(x) \tag{10.100}
\end{equation*}
$$

and, by convention, $0 \times \infty=0$.

Remark 10.9. If $f(x)=1$ for all $x \in E, E \in \mathcal{M}$, then one has

$$
\begin{equation*}
\int_{E} 1 d \mu(x)=\mu(E) \tag{10.101}
\end{equation*}
$$

Proposition 10.53. Let (X, \mathcal{M}, μ) be a measure space, let E be a subset of X so that $E \in \mathcal{M}$ and let $f: E \rightarrow[0,+\infty]$ be a non-negative function which belongs to the class $\operatorname{Meas}\left(\left(E, \mathcal{M}_{E}\right),\left([0,+\infty], \overline{\mathbb{B}}_{[0,+\infty]}\right)\right)$. Also, let $\left(E, \mathcal{M}_{E}, \mu_{E}\right)$ be the measure space where μ_{E} is the restriction of measure μ to set E and \mathcal{M}_{E} is the restriction of the σ algebra \mathcal{M} to set E^{2}. Then the abstract integral of f on subset E of X with respect to measure μ coincides with the abstract integral of f on set E with respect to measure $\mu_{E}, i e$,

$$
\begin{equation*}
\int_{E} f(x) d \mu(x)=\int_{E} f(x) d \mu_{E}(x) \tag{10.102}
\end{equation*}
$$

Corollary 10.18. Let (X, \mathcal{M}, μ) be a measure space, let E be a subset of X so that $E \in \mathcal{M}$ and let $f: E \rightarrow[0,+\infty]$ be a non-negative function which belongs to the class $\operatorname{Meas}\left(\left(E, \mathcal{M}_{E}\right),\left([0,+\infty], \overline{\mathbb{B}}_{[0,+\infty]}\right)\right)$. Then, if $\mu(E)=0$, one has

$$
\begin{equation*}
\int_{E} f(x) d \mu(x)=0 \tag{10.103}
\end{equation*}
$$

[^0]
[^0]: ${ }^{2}$ Alternatively, μ_{E} is the measure defined on the σ-algebra \mathcal{M}_{E} as in Equation (10.5); see Definitions 1.100 and 10.6, Notation 10.1 and Proposition 10.2

