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Volatility: Importance and Relationship with other Risk Measures

Volatility is usefully employed in several problems of
mathematical finance, such as:

Derivatives Pricing

Mutual Funds Risk Assessment

Term Structure Modelling
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Volatility: Importance and Relationship with other Risk Measures

Volatility has a close correspondance with any risk measure, 
like Value-at-Risk (VaR) and … 
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Volatility: Importance and Relationship with other Risk Measures

… Expected Shortfall (ES)
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Plot of  the Time Series of  the Annualized Volatility

Volatility: Random Variable and Stochastic Process
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Probability Distribution of  the Annualized Volatility

Volatility: Random Variable and Stochastic Process
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Volatility: Random Variable and Stochastic Process

t

P(t)

time

t

Volatility is 

a Random Variable

The Time Series of  t is 

a Stochastic Process
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TIME SERIES ANALYSIS OF VOLATILITY

Need for Volatility Forecasts based on Stochastic Volatility Models

The GARCH Diffusive Approach: Intuition

13

MODELLING THE TIME SERIES OF 
VOLATILITY THROUGH 

THE DIFFUSION LIMIT OF GARCH PROCESSES

from: STOCHASTIC DIFFERENCE EQUATIONS

to: STOCHASTIC DIFFERENTIAL EQUATIONS

of  the TIME INTERVALSSHRINKINGvia:

The GARCH Diffusive Approach: Intuition
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The Convergence Theorem on R2: The Statement

The sequence          , whose measurable space is                   , converges weakly for h  0 
to the process         which has a unique distribution and is characterized by the following 
stochastic differential equation:

where             is a two-dimensional standard Brownian motion, if  the conditions 1-4, 
presented below, are satisfied.
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The process has a distribution independent on the choice of
and it takes finite values over finite time intervals, i.e. :

The Convergence Theorem on R2: The Statement
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The Convergence Theorem on R2: The Conditions

CONDITION 1

If  there exists a  >0 such that:

Then there exist             and             , continuous measures respectively mapping from
into the space of  the 2x2 semi-definite positive matrices, and from                   

into       , such that:
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The Convergence Theorem on R2: The Conditions

There exists , a continuous mapping from into
such that, it holds:

CONDITION 2

,
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The Convergence Theorem on R2: The Conditions

CONDITION 3

For h   0,        converges in distribution to a random variable        with probability 
measure        on

uniquely specify the distribution of the process

CONDITION 4

, and 
characterized by an initial distribution       , a conditional second moment

and a conditional first moment
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The Diffusion Limit of  the M-GARCH(1,1): The Statement

Given the equation of  the conditional variance* in the M-GARCH(1,1):

or, equivalently:

is i.i.d. N(0,1)

its diffusion limit is:

is N(0,1)

* The focus is on the difference equation for the volatility. 
For the convergence of  the first equation see Minenna 2003.
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=

The Diffusion Limit of  the M-GARCH(1,1): The Proof

STEP 1: 
THE RE-SCALING OF THE PROCESS

The k intervals are divided into 1/h subintervals each one of length h
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=

The Diffusion Limit of  the M-GARCH(1,1): The Proof

a.s. under

STEP 2: 
THE CONSTRUCTION OF THE PROCESS 

Definition of the probability measure Ph on the Skorokhod Space D such that:
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The Diffusion Limit of  the M-GARCH(1,1): The Proof

A qualitative idea

The round point is the process  
The horizontal line is the process 

 2ln kh

 2ln
h

t
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The Diffusion Limit of  the M-GARCH(1,1): The Proof

STEP 3: 
CHECK OF CONDITION 1 OF THE CONVERGENCE THEOREM 

Finding the values of             and            which guarantee 

the convergence of  the conditional moments
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Q.E.D.

The Diffusion Limit of  the M-GARCH(1,1): The Proof

• Condition 2 is verified for every  >0, i.e.:

• Condition 3 is evidently satisfied by construction of  the process

• Consequently, Condition 4 is verified too.

STEP 4: 
CHECK OF CONDITIONS 2, 3 and 4 OF THE CONVERGENCE THEOREM 
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From the Diffusion Limit of  the 
GARCH Process 

it is possible to establish 
a Predictive Interval for t

The GARCH Diffusive Approach: The Predictive Interval for the Volatility

KEY POINT
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The Predictive Interval for the Volatility : The Properties of  the Stochastic Differential Equation for the M-GARCH(1,1)
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The relationship between the Stochastic Difference Equation and the Stochastic Differential Equation

The Predictive Interval for the Volatility: The Estimation of  the Parameters of  the Stochastic Differential Equation
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Matching of  the first two Conditional Moments

The Predictive Interval for the Volatility: The Estimation of  the Parameters of  the Stochastic Differential Equation
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The Maximum Likelihood Method

The Predictive Interval for the Volatility: The Estimation of  the Parameters of  the Stochastic Differential Equation
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

The Predictive Interval for the Volatility: Determination of  the Interval
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t

time

The Predictive Interval for the Volatility: Determination of  the Interval
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time
Width of  the Predictive Interval

t

The Predictive Interval for the Volatility: Determination of  the Interval
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c

Analogous Procedure

The GARCH Diffusive Approach: Other GARCH Models

THE DIFFUSION LIMIT OF THE L-GARCH(1,1)

Given the L-GARCH(1,1) model:

is N(0,1)

its diffusion limit is:
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THE DIFFUSION LIMIT OF THE  E-GARCH(1,1)

c Given the E-GARCH(1,1) model:

its diffusion limit is:

is N(0,1)

Analogous Procedure

THE DIFFUSION LIMIT OF THE L-GARCH(1,1)

Given the L-GARCH(1,1) model:

is N(0,1)

its diffusion limit is:

The GARCH Diffusive Approach: Other GARCH Models Syllabus
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Application to Flexible Funds Risk Assessment: Key Concepts on Flexible Funds

Freedom to invest in any market
and in any financial instrument
and to take leveraged positions

DEFINITION

Maximization of  the expected 

return for a given level of  risk
OBJECTIVE
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Risk Exposure

Asset Classes 

selected by the

Asset Manager

Use of  derivatives 

and leverage

Application to Flexible Funds Risk Assessment: Key Concepts on Flexible Funds
Syllabus
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QUALITATIVE RISK CLASSES

Low

Medium-Low

Medium

Medium-High

High

Very High

Application to Flexible Funds Risk Assessment: Transparency Regulation on the Risk Profile
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Fundamental Assumption

The quantitative risk assessment

is based on

VOLATILITY MEASURES

Application to Flexible Funds Risk Assessment: Transparency Regulation on the Risk Profile
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Variation of the 

Volatility over time

Exposure to the MigrationMigration RiskRisk

Application to Flexible Funds Risk Assessment: Transparency Regulation on the Risk Profile 51

Variation of the 

Volatility over time

Exposure to the MigrationMigration RiskRisk

QUALITATIVE RISK CLASSES

Very High

High

Medium

Medium-Low

Medium-High

Low

Very High

High

Medium

Medium-Low

Medium-High

Low

Application to Flexible Funds Risk Assessment: Transparency Regulation on the Risk Profile
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Regulatory framework consistent with the markets 

evolution and the activity of  the Asset Manager

Assessment and Delimitation of  the Migration Risk

Application to Flexible Funds Risk Assessment: Transparency Regulation on the Risk Profile
Syllabus
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Position inside the Risk Class declared in the Prospectus

Evaluation and Management of  the Migration Risk

Application to Flexible Funds Risk Assessment: The Perspective of  the Asset Manager
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Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Mapping  of  the Qualitative Risk Classes

into corresponding Volatility Intervals

Step 1: Definition of  the Loss Intervals of  the Fund

What is the Loss in a Financial Investment?

RISK-NEUTRALITY PRINCIPLE

LOSS      (- 100%,      ] rfr
where:       = average of  the Probability 
Distribution of  the risk-free rate

rfr
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Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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Step 1: Definition of  the Loss Intervals of  the Fund

0 1
rf

yr 1
rf

yr

1( )rf
yP r

= average of  the Probability 
Distribution of  the 1-year risk-free rate

1
rf

yr

After having selected the Probability Distribution of  the 1-year risk-free rate …

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

… to each Qualitative Risk Class is associated the corresponding annual Loss 
Interval (multiple of         according to an exponential function) …
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1
rf

yr

1
rf

yr

Step 1: Definition of  the Loss Intervals of  the Fund

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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low

medium-low

medium

medium-high

high

very high

Risk Classes
Loss Intervals

Lmin Lmax

0L1,min 0L1,max

0L2,min 0L2,max

0L3,min 0L3,max

0L4,min 0L4,max

0L5,min 0L5,max

0L6,min 0L6,max

Step 1: Definition of  the Loss Intervals of  the Fund

... obtaining six initial loss intervals:

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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Step 2: Mapping of  the Loss Intervals of  the Fund to the
corresponding Volatility Intervals of  the Fund

low

medium-low

medium

medium-high

high

very high

Risk Classes
Loss Intervals

Lmin Lmax

0L1,min 0L1,max

0L2,min 0L2,max

0L3,min 0L3,max

0L4,min 0L4,max

0L5,min 0L5,max

0L6,min 0L6,max

( )t t tdR q R dt dW   

t t t tdR R dt R dW  
………

*The subscript 0 preceding the volatility 
indicates that this is the initial interval, 
i.e. before the calibration

04,min 04,max

low

medium-low

medium

medium -high

high

very high

Risk Classes Volatility Intervals

min max

01,min 01,max

02,min 02,max

03,min 03,max

06,min 06,max

05,min 05,max

Risk Classes

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Step 3: Calibration of  the Intervals

REQUIREMENTS

Ability to express in a robust and 
significant way the risk level “typical”
of  the corresponding Qualitative Class

Stability over time also when the yield 
curve changes significantly

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Step 3: Calibration of  the Intervals

REQUIREMENTS

Ability to express in a robust and 
significant way the risk level “typical”
of  the corresponding Qualitative Class

Stability over time also when the yield 
curve changes significantly

GARCH Diffusive Models

Stochastic Non-Linear 
Programming

TOOLS



Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

REQUIREMENTS

Ability to express in a robust and 
significant way the risk level “typical”
of  the corresponding Qualitative Class

Stability over time also when the yield 
curve changes significantly

Step 3: Calibration of  the Intervals

GARCH Diffusive Models

Stochastic Non-Linear 
Programming

TOOLS

Fine-tuning Intervention on the Volatility Intervals

65

3.0 Selection of  an initial Volatility Interval

[04,min 04,max]

Step 3: Calibration of  the Intervals

Risk Classes
Volatility Intervals 

min max

01,min 01,maxlow

medium-low

medium

high

very high 0min 0,max

0in 0,max

0,min 0,max

0min 0max

medium-high 0,min 0,max

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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3.1 Simulation of  the Fund pattern

Step 3: Calibration of  the Intervals

NAV Stochastic Differential Equation

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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3.1 Simulation of  the Fund pattern

Step 3: Calibration of  the Intervals

NAV S.D.E. What Parameters?

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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3.1 Simulation of  the Fund pattern

Step 3: Calibration of  the Intervals

NAV S.D.E. What Parameters?

The Drift   

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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3.1 Simulation of  the Fund pattern

Step 3: Calibration of  the Intervals

Risk-Neutrality

Principle

rfrDrift  =

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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3.1 Simulation of  the Fund pattern

Step 3: Calibration of  the Intervals

5
rf
yr

Robustness of  the

Volatility Intervals

Drift  =

O/N 1y 2y 3y 4y 5y

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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Step 3: Calibration of  the Intervals

1% 1%98%

5
rf
yr1% 5

rf
yr 99% 5

rf
yr

98%

 5
rf
yP r

3.1 Simulation of  the Fund pattern

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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3.1 Simulation of  the Fund pattern

Step 3: Calibration of  the Intervals

1% 5
rf
yr 99% 5

rf
yr

99% 5 1% 5

1
rf rf
y yr r

Continuous Uniform
Probability Distribution

1% 1%98%

5
rf
yr1% 5

rf
yr 99% 5

rf
yr

98%

 5
rf
yP r

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement



7373

3.1 Simulation of  the Fund pattern

Step 3: Calibration of  the Intervals

NAV S.D.E. What Parameters?

The Diffusion   

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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3.1 Simulation of  the Fund pattern

Step 3: Calibration of  the Intervals

Initial Volatility  

Interval: [04,min 04,max]

0 4,min 0 4,max0 4,max 0 4,min

2
 

0 4,max 0 4,min

2
 

Symmetric Triangular 
Probability Distribution

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Representativeness of

the Volatility Intervals
time

NAV
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Step 3: Calibration of  the Intervals

NAV

3.2 Determination of  the Time Series of  the 
Annual Volatility 

time

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

time

NAV
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Step 3: Calibration of  the Intervals

NAV

3.2 Determination of  the Time Series of  the 
Annual Volatility 

time

For each trajectory

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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0G
4,max,t(3)

0G
4,min,t(3)

time

t

0G
4,max,t(2)

0G
4,min,t(2)

0G
4,max,t(1)

0G
4,min,t(1)

t(3)t(2)t(1)

3.3 Volatility Forecast Band through
GARCH Diffusive Models

Step 3: Calibration of  the Intervals

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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time

t
0G

4,max

Upper Bound

0G
4,min

Lower Bound

Step 3: Calibration of  the Intervals

3.3 Volatility Forecast Band through
GARCH Diffusive Models

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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3.4 Validation of  the initial Volatility Interval

Step 3: Calibration of  the Intervals

[0G
4,min 0G

4,max]

[04,min 04,max]

VS

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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time

t

Calculus of  the number of  observations outside the Band

3.4 Validation of  the initial Volatility Interval

Step 3: Calibration of  the Intervals

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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Calculus of  the number of  observations outside the Band

3.4 Validation of  the initial Volatility Interval

Step 3: Calibration of  the Intervals

Trajectory n. obs.         [04,min     0 4,max] n. obs. <  04,min n. obs. > 04,max

1

2

...

n

Tot.     [04,min     0 4,max] Tot.  < 04,min Tot.  > 04,max





Hp.: n. of  observations of t = 250 for each trajectory

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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[Tot. > 04,max ] + [Tot. < 04,min]


n*250

[Tot. > 04,max ]
up

n*250

[Tot. < 04,min ]
down

n*250
= =

Number of  observations outside the Band in 1 year

3.4 Validation of  the initial Volatility Interval

Step 3: Calibration of  the Intervals

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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>5% 
and

3.1

>

3.4.1 Update of  the initial Volatility Interval     
Iteration of  the Procedure

up down

[04,min 14,max]

Step 3: Calibration of  the Intervals

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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>5% 
and

3.1

<up down

[14,min 04,max]

Step 3: Calibration of  the Intervals

3.4.2 Update of  the initial Volatility Interval                        
Iteration of  the Procedure

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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Step 3: Calibration of  the Intervals

= ≤ 5% 

3.4.3 End of  the Procedure

[04,min   04,max]  

[4,min   4,max]

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
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OUTPUT

Risk Classes
Volatility Intervals 

min max

0.01% 0.49%

0.50% 1.59%

1.60% 3.99%

4.00% 9.99%

25.00% above 25.00%

10.00% 24.99%

Step 3: Calibration of  the Intervals

low

medium-low

medium

medium-high

high

very high

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement
Syllabus
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min max

Mapping of  the QualitativeRisk Classes

to corresponding Volatility Intervals

Risk Classes
Volatility Intervals

min max

0.01% 0.49%

0.50% 1.59%

1.60% 3.99%

4.00% 9.99%

25.00% above 25.00%

10.00% 24.99%

low

medium-low

medium

medium-high

high

very high

Application to Flexible Funds Risk Assessment: The Solution for the Asset Manager
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min max

Mapping of  the QualitativeRisk Classes

to corresponding Volatility Intervals

Risk Classes
Volatility Intervals

min max

0.01% 0.49%

0.50% 1.59%

1.60% 3.99%

4.00% 9.99%

25.00% above 25.00%

10.00% 24.99%

low

medium-low

medium

medium-high

high

very high

Application to Flexible Funds Risk Assessment: The Solution for the Asset Manager

SAFE ASSETS
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Mapping of  the QualitativeRisk Classes

to corresponding Volatility Intervals

Risk Classes
Volatility Intervals

min max

0.01% 0.49%

0.50% 1.59%

1.60% 3.99%

4.00% 9.99%

25.00% above 25.00%

10.00% 24.99%

low

medium-low

medium

medium-high

high

very high

Application to Flexible Funds Risk Assessment: The Solution for the Asset Manager

min max
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Mapping of  the QualitativeRisk Classes

to corresponding Volatility Intervals

Risk Classes
Volatility Intervals

min max

0.01% 0.49%

0.50% 1.59%

1.60% 3.99%

4.00% 9.99%

25.00% above 25.00%

10.00% 24.99%

low

medium-low

medium

medium-high

high

very high

Application to Flexible Funds Risk Assessment: The Solution for the Asset Manager

RISKY ASSETS

min max

Syllabus
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• Application to Flexible Funds Risk Assessment
• Key Concepts on Flexible Funds

• Transparency Regulation on the Risk Profile

• The Perspective of  the Asset Manager

• Quantitative Methodology for Risk Measurement

• The Solution for the Asset Manager

• Migration and Prospectus

When does the Migration occur?
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Application to Flexible Funds Risk Assessment: Migration and Prospectus

The Migration occurs when the fund remains for a 
significant period outside the qualitative class 

declared in the Prospectus …

M edioA lto-A lto (10)

A lto-M oltoA lto (25)

 

 

High

Migration

Medium-High

Stability
Stability

High-Very High

Medium High-High
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Application to Flexible Funds Risk Assessment: Migration and Prospectus
Syllabus

95

• Empirical Evidence on the European Industry
• Preliminary Informations

• The Evolution of  the Risk-Profile over time

Empirical Evidence on the European Industry: Preliminary InformationsEmpirical Evidence on the European Industry: Preliminary Informations

Country Total (A) Selected (B) Representativ ity (B/A)

Austria 17 13 76.5%
France 92 53 57.6%
Germany 63 45 71.4%
Ireland 2 1 50.0%
Italy 58 52 89.7%
Luxembourg 252 153 60.7%
Spain 224 130 58.0%
UK 8 7 87.5%
Total 716 454 63.4%

Plot of  the Volatility Time Series for some European Flexible Funds

Empirical Evidence on the European Industry: Preliminary InformationsEmpirical Evidence on the European Industry: Preliminary Informations

Histogram of  the Volatility Time Series of  the Flexible Funds selected

Empirical Evidence on the European Industry: Preliminary Informations Empirical Evidence on the European Industry: Preliminary Informations

LUXEMBOURG

Empirical Evidence on the European Industry: Preliminary Informations



Empirical Evidence on the European Industry: Preliminary Informations

GERMANY

Empirical Evidence on the European Industry: Preliminary Informations Empirical Evidence on the European Industry: Preliminary Informations

ITALY

Empirical Evidence on the European Industry: Preliminary Informations Empirical Evidence on the European Industry: Preliminary Informations

SPAIN

Empirical Evidence on the European Industry: Preliminary Informations

Empirical Evidence on the European Industry: Preliminary Informations

FRANCE

Empirical Evidence on the European Industry: Preliminary Informations Empirical Evidence on the European Industry: Preliminary Informations

UNITED KINGDOM

Empirical Evidence on the European Industry: Preliminary Informations
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Empirical Evidence on the European Industry: Preliminary Informations

Initial Distribution of  the 454 Funds between the 6  risk classes 

(abs. values)

Country 1 2 3 4 5 Total
Austria 0 0 4 8 1 13
France 0 2 9 37 5 53
Germany 0 2 10 26 7 45
Ireland 0 1 0 0 0 1
Italy 1 11 11 28 1 52
Luxembourg 1 6 30 100 16 153
Spain 0 23 33 62 12 130
UK 0 0 0 5 2 7
Total 2 45 97 266 44 454

Initial Risk Class as from 1st January 2006

Country 1 2 3 4 5 Total
Austria 0.0% 0.0% 30.8% 61.5% 7.7% 100%
France 0.0% 3.8% 17.0% 69.8% 9.4% 100%
Germany 0.0% 4.4% 22.2% 57.8% 15.6% 100%
Ireland 0.0% 100.0% 0.0% 0.0% 0.0% 100%
Italy 1.9% 21.2% 21.2% 53.8% 1.9% 100%
Luxembourg 0.7% 3.9% 19.6% 65.4% 10.5% 100%
Spain 0.0% 17.7% 25.4% 47.7% 9.2% 100%
UK 0.0% 0.0% 0.0% 71.4% 28.6% 100%
Total 0.4% 9.9% 21.4% 58.6% 9.7% 100%

Initial Risk Class as from 1st January 2006
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Empirical Evidence on the European Industry: Preliminary Informations

Initial Distribution of  the 454 Funds between the 6  risk classes 

(perc. values)

• Empirical Evidence on the Italian industry
• Preliminary Informations
• The Evolution of  the Risk-Profile over time

Syllabus
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Empirical Evidence on the European Industry: The Evolution of  the Risk Profile over time

MIGRATION

Medium Low – Medium

Medium – Medium High

Medium High – High
•

Risk Class as from the Prospectus

Risk effectively taken
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Empirical Evidence on the Italian Industry: The Evolution of  the Risk Profile over time

Number of  Migrations occurred between different risk classes 

over the period 01/01/2006 – 12/31/2007 (abs. values)
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Country 0 1 2 3 4 5 Total
Austria 2 6 2 3 0 0 13
France 20 13 8 11 1 0 53
Germany 18 6 13 8 0 0 45
Ireland 0 1 0 0 0 0 1
Italy 15 12 17 8 0 0 52
Luxembourg 63 28 34 23 4 1 153
Spain 44 30 31 21 4 0 130
UK 1 3 1 2 0 0 7
Total 163 99 106 76 9 1 454

Number of Migrations over the period January 2006 - December 2007

Empirical Evidence on the Italian Industry: The Evolution of  the Risk Profile over time

Analysis of  the Migrations per Country

over the period 01/01/2006 – 12/31/2007 (perc. values)
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Country 0 1 2 3 4 5 Total
Austria 15.4% 46.2% 15.4% 23.1% 0.0% 0.0% 100%
France 37.7% 24.5% 15.1% 20.8% 1.9% 0.0% 100%
Germany 40.0% 13.3% 28.9% 17.8% 0.0% 0.0% 100%
Ireland 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100%
Italy 28.8% 23.1% 32.7% 15.4% 0.0% 0.0% 100%
Luxembourg 41.2% 18.3% 22.2% 15.0% 2.6% 0.7% 100%
Spain 33.8% 23.1% 23.8% 16.2% 3.1% 0.0% 100%
UK 14.3% 42.9% 14.3% 28.6% 0.0% 0.0% 100%

Countries Migrations over the period January 2006 - December 2007

Empirical Evidence on the Italian Industry: The Evolution of  the Risk Profile over time

Frequency of  the Migrations

over the period 01/01/2006 – 12/31/2007 (perc. values)
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Country 0 1 2 3 4 5
Austria 1.2% 6.1% 1.9% 3.9% 0.0% 0.0%
France 12.3% 13.1% 7.5% 14.5% 11.1% 0.0%
Germany 11.0% 6.1% 12.3% 10.5% 0.0% 0.0%
Ireland 0.0% 1.0% 0.0% 0.0% 0.0% 0.0%
Italy 9.2% 12.1% 16.0% 10.5% 0.0% 0.0%
Luxembourg 38.7% 28.3% 32.1% 30.3% 44.4% 100.0%
Spain 27.0% 30.3% 29.2% 27.6% 44.4% 0.0%
UK 0.6% 3.0% 0.9% 2.6% 0.0% 0.0%
Total 100% 100% 100% 100% 100% 100%
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Conclusions

Syllabus
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 GARCH Diffusive Approach to make robust and
reliable Volatility Forecast (adaptiveness, no echoes effects)

 Financial Application to the Transparency regulation of
Flexible Mutual Funds
• mapping of  qualitative risk classes to calibrated, increasing 

and non overlapping intervals of  the annualized volatility of  

NAV returns

• usefulness of  this quantitative methodology to monitor the 

exposure to the migration risk and to promptly capture the 

occurrence of  the migrations which requires a timely update 

of  the Prospectus.

Conclusions
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 Empirical Evidence: 
the phenomenon of  the migration interests more
the funds which belong to the riskiest classes

 Closing Recommendations: 
exploring other fields of  application of  the 
described methodology, especially to move faster 
towards a really levelled playing field

Conclusions
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