AN APPLICATION OF THE GARCH DIFFUSIVE APPROACH TO THE DEVELOPMENT OF VOLATILITY MEASURES ON THE RISK PROFILE OF MUTUAL FUNDS

XXXII CONVEGNO AMASES - TRENTO, 1-4 SETTEMBRE 2008

Volatility: Importance and Relationship with other Risk Measures

Volatility is usefully employed in several problems of mathematical finance, such as:

Derivatives Pricing $dS_t = \mu S_t dt + \sigma S_t dW_t$

Mutual Funds Risk Assessment $d \ln NAV_t = b(t, \ln NAV_t)dt + \sigma(t, \ln NAV_t) dW_t$

> Term Structure Modelling $df_t = \alpha(t, T)dt + \sigma(t, T)dW_t$ $\alpha(t, T)dt = \sigma(t, T) \int_t^T \sigma(t, s)ds$

 $(T)dt = \sigma(t,T) \int_t \sigma(t,s)$

Syllabus

Volatility

Importance and Relationship with other Risk Measures
 Random Variable and Stochastic Process

Syllabus

- Volatility
- The GARCH Diffusive Approach
- Application to Flexible Funds Risk Assessment

• Empirical Evidence on the Risk Profile of Flexible Mutual Funds

Conclusions

Volatility: Importance and Relationship with other Risk Measures

Volatility has a close correspondance with any risk measure, like Value-at-Risk (VaR) and ...

Volatility: Random Variable and Stochastic Process

Plot of the Time Series of the Annualized Volatility

Syllabus

Volatility

Importance and Relationship with other Risk Measures
 Random Variable and Stochastic Process

Volatility: Importance and Relationship with other Risk Measures

... Expected Shortfall (ES)

Volatility: Random Variable and Stochastic Process

Probability Distribution of the Annualized Volatility

CONSOB CONSOB

A

Volatility: Random Variable and Stochastic Process

The GARCH Diffusive Approach: Intuition

The Convergence Theorem on R2: The Statement

Syllabus

• The GARCH Diffusive Approach

Intuition

- The Convergence Theorem on R²
 The Statement
 The Conditions
 The Diffusion Limit of the M-GARCH(1,1)
- The Statement
- The Proof
- The Predictive Interval for the Volatility
 - The Properties of the Stochastic Differential Equation for the M-GARCH(1,1)
 - The Estimation of the Parameters of the Stochastic Differential
 - Equation
- Determination of the Interval • Other GARCH Models

• The GARCH Diffusive Approach

• The Convergence Theorem on R² • The Statement

• The Diffusion Limit of the M-GARCH(1,1)

• The Predictive Interval for the Volatility

· Determination of the Interval

• The GARCH Diffusive Approach

• The Convergence Theorem on R² • The Statement

• The Diffusion Limit of the M-GARCH(1,1)

The Predictive Interval for the Volatility

• Determination of the Interval

• The Properties of the Stochastic Differential Equation for the M-GARCH(1,1)

• The Estimation of the Parameters of the Stochastic Differential

The Conditions

• The Statement • The Proof

Equation

Other GARCH Models

Intuition

Syllabus

The Convergence Theorem on R²: The Statement

The GARCH Diffusive Approach: Intuition

The sequence $\{X_t^h\}$, whose measurable space is $(\mathbb{R}^2, \mathbb{B}(\mathbb{R}^2))$, converges weakly for h [0 to the process $\{X_t\}$ which has a unique distribution and is characterized by the following stochastic differential equation:

Need for Volatility Forecasts based on Stochastic Volatility Models

TIME SERIES ANALYSIS OF VOLATILITY

$$dX_t = b(x, t)dt + \sigma(x, t)dW_{2,t}$$

where $W_{2,t}$ is a two-dimensional standard Brownian motion, if the conditions 1-4, presented below, are satisfied.

15

The Convergence Theorem on R²: The Conditions

CONDITION 1

If there exists a $\delta > 0$ such that:

$$\lim_{h\downarrow 0} \left(\begin{array}{c} c_{h,\delta}(x_1,t) \\ c_{h,\delta}(x_2,t) \end{array} \right) = 0$$

Then there exist a(x, t) and b(x, t), continuous measures respectively mapping from $\mathbb{R}^2 \times [0, \infty)$ into the space of the $2x^2$ semi-definite positive matrices, and from $\mathbb{R}^2 \times [0, \infty)$ into \mathbb{R}^2 , such that:

 $\lim_{h\downarrow 0} \binom{b_h(x_1,t)}{b_h(x_2,t)} = \binom{b(x_1,t)}{b(x_2,t)}$

 $= \lim_{h \downarrow 0} \left(\begin{array}{cc} a_h(x_1,t) & a_h((x_1,x_2),t) \\ a_h((x_2,x_1),t) & a_h(x_2,t) \end{array} \right) = \left(\begin{array}{cc} a(x_1,t) & 0 \\ 0 & a(x_2,t) \end{array} \right)$

Syllabus

Intuition

The Cond

GARCH(1,1)

Equation

• Other GARCH Models

The Statement
 The Proof

• The Properties of the Stochastic Differential Equation for the M-

• The Estimation of the Parameters of the Stochastic Differential

CONDITION 2

There exists $\sigma(x,t)$, a continuous mapping from $\mathbb{R}^2 \times [0,\infty)$ into \mathbb{R}^2 , such that, $\forall x_1 \in \mathbb{R}^1, \forall x_2 \in \mathbb{R}^1$, it holds:

The Diffusion Limit of the M-GARCH(1,1): The Proof

The Convergence Theorem on R²: The Conditions

CONDITION 3

For $h \downarrow 0, X_0^h$ converges in distribution to a random variable X_0 with probability measure v_0 on $(\mathbb{R}^2, \mathbb{B}(\mathbb{R}^2))$

CONDITION 4

 v_0 , a(x,t) and b(x,t) uniquely specify the distribution of the process $\{X_t\}$ characterized by an initial distribution v_0 , a conditional second moment a(x,t) and a conditional first moment b(x,t)

• The Properties of the Stochastic Differential Equation for the M-

• The Estimation of the Parameters of the Stochastic Differential

A qualitative idea

The horizontal line is the process $\left\{ \ln \sigma_t^2 \right\}$

4h

5b

The round point is the process

 $\left\{\ln \sigma_{\scriptscriptstyle kh}^2\right\}$

6h

CONSOB

Syllabus

Intuition

The GARCH Diffusive Approach

• The Convergence Theorem on R²

• The Diffusion Limit of the M-GARCH(1,1)

• The Proof • The Predictive Interval for the Volatility

Determination of the Interval

The Diffusion Limit of the M-GARCH(1,1): The Proof

• The Statement • The Conditions

The Statement

GARCH(

Equation

Other GARCH Models

• Determination of the Interval • Other GARCH Models

• The Properties of the Stochastic Differential Equation for the M-

• The Estimation of the Parameters of the Stochastic Differential

The Diffusion Limit of the M-GARCH(1,1): The Proof

• The GARCH Diffusive Approach

• The Convergence Theorem on R²

• The Diffusion Limit of the M-GARCH(1,1)

The Predictive Interval for the Volatility

The Statement

• The Statement • The Proof

GARCH(11

Equation

The Conditions

Syllabus

Intuition

 $\beta_{0h} + (\beta_{1h} - h) \ln \sigma_{kh}^2 + 2\beta_{1h} \left\{ \sqrt{h} \left[\ln \left| Z_k \right| - E \left(\ln \left| Z_k \right| \right) \right] + E \left(\ln \left| Z_k \right| \right) \right\}$

24 CONSOB

The Diffusion Limit of the M-GARCH(1,1): The Proof

The Diffusion Limit of the M-GARCH(1,1): The Proof

<u>Syllabus</u>

The GARCH Diffusive Approach

 Intuition
 The Convergence Theorem on R²
 The Statement
 The Conditions

 The Diffusion Limit of the M-GARCH(1,1)

 The Statement
 Proof

 The Predictive Interval for the Volatility

 The Properties of the Stochastic Differential Equation for the M-GARCH(1,1)
 The Predictive Interval for the Volatility
 The Properties of the Stochastic Differential Equation for the M-GARCH(1,1)
 The Estimation of the Parameters of the Stochastic Differential Equation
 Determination of the Interval

• Other GARCH Models

CONSOB

CONSOB

The Predictive Interval for the Volatility: The Estimation of the Parameters of the Stochastic Differential Equation

The relationship between the Stochastic Difference Equation and the Stochastic Differential Equation

 $d\ln\sigma_t^2 = \left[\beta_0 + 2\beta_1 \mathbf{E}\left(\ln|Z_t|\right) + \left(\beta_1 - 1\right)\ln\sigma_t^2\right]dt + 2\left|\beta_1\right|\sqrt{Var(\ln|Z_t|)}dW_t^*$

Syllabus

• The GARCH Diffusive Approach

Intuition

- The Convergence Theorem on R²
- The Statement • The Conditions
- The Diffusion Limit of the M-GARCH(1,1)
- The Statement
- The Proof
- The Predictive Interval for the Volatility
- The Properties of the Stochastic Differential Equation for the M-
- The Estimation of the Parameters of the Stochastic Differential
- Equation
- Determination of the Interval
 Other GARCH Models

CONSOB

CONSOB

CONSOB

 $d\ln\sigma_t^2 = \left[\beta_0 + 2\beta_1 \mathbf{E} \left(\ln|Z_t|\right) + (\beta_1 - 1)\ln\sigma_t^2\right] dt + 2\left|\beta_1\right| \sqrt{Var(\ln|Z_t|)} dW_t$

32

The Predictive Interval for the Volatility: The Estimation of the Parameters of the Stochastic Differential Equation

KEY POINT

 Syllabus

 • The GARCH Diffusive Approach

 • Intuition

 • The Convergence Theorem on R²

 • The Statement

 • The Conditions

 • The Conditions

 • The Diffusion Limit of the M-GARCH(I,I)

 • The Statement

 • Proof

 • The Predictive Interval for the Volatility

 • The Properties of the Stochastic Differential Equation for the M-GARCH(I,I)

 • The Estimation of the Parameters of the Stochastic Differential Equation

 • Determination of the Interval

 • Other GARCH Models

The Predictive Interval for the Volatility: The Estimation of the Parameters of the Stochastic Differential Equation

 $\ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \hat{a} + \hat{b} \ln \sigma_k^2 + e_k$

 $\beta_0 = f_1\left(\widehat{a}, \widehat{b}\right)$

 $\beta_1 = f_2\left(\widehat{a}, \widehat{b}\right)$

 $2\left|\beta_{1}\right|\sqrt{Var\left(\ln\left|Z_{t}\right|\right)}=f_{3}\left(\widehat{a},\widehat{b},e_{k}\right)$

CONSOB

The Maximum Likelihood Method

The GARCH Diffusive Approach: Other GARCH Models

Analogous Procedure

The Predictive Interval for the Volatility: Determination of the Interval

Syllabus

• The GARCH Diffusive Approach

Intuition

- The Convergence Theorem on R² The Statement
- The Conditions
- The Diffusion Limit of the M-GARCH(1,1)
- The Statement
- Proof
- The Predictive Interval for the Volatility • The Properties of the Stochastic Differential Equation for the M-
 - GARCH(1 • The Estimation of the Parameters of the Stochastic Differential Equation
- Determination of the Interval
- Other GARCH Models

Syllabus

• Application to Flexible Funds Risk Assessment

• Key Concepts on Flexible Funds

- Transparency Regulation on the Risk Profile
- The Perspective of the Asset Manager
- · Quantitative Methodology for Risk Measurement
- The Solution for the Asset Manager
- Migration and Prospectus

The GARCH Diffusive Approach: Other GARCH Models

Application to Flexible Funds Risk Assessment: Key Concepts on Flexible Funds

DEFINITION

Freedom to invest in any market and in any financial instrument and to take leveraged positions

OBJECTIVE

Maximization of the expected return for a given level of risk

CONSOB CONSOB

Application to Flexible Funds Risk Assessment: Key Concepts on Flexible Funds

Syllabus

Application to Flexible Funds Risk Assessment: Transparency Regulation on the Risk Profile

Application to Flexible Funds Risk Assessment: Transparency Regulation on the Risk Profile

Assessment and Delimitation of the Migration Risk

Regulatory framework consistent with the markets evolution and the activity of the Asset Manager

A

Application to Flexible Funds Risk Assessment

- Key Concepts on Flexible Funds
- Transparency Regulation on the Risk Profile
- The Perspective of the Asset Manager
- Quantitative Methodology for Risk Measurement
- The Solution for the Asset Manager
- Migration and Prospectus

Mapping of the Qualitative Risk Classes

into corresponding Volatility Intervals

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Step 1: Definition of the Loss Intervals of the Fund

What is the Loss in a Financial Investment?

RISK-NEUTRALITY PRINCIPLE

where: $\overline{r^{\prime\prime}}$ = average of the Probability Distribution of the risk-free rate

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

	<u>Step 2</u> :	Mapping of correspondi	the Loss Intervals of t ng Volatility Intervals	he Fund to th of the Fund	e
Risk Classes	Loss Int	ervals I			
m	$_{0}L_{1 min}$	D_{max}			
nedium-low	$_{0}L_{2,min}$	0L2,max	$dR = q(\mu - R)dt + c$	dW_	
redium	$_{0}L_{3,min}$	0L3,max	AR = uR At - all	and and and	
nedium-high	$_{o}L_{4,min}$	0L4.max	2. P. July Houte	- for the second	
igh	$_{0}L_{5,min}$	$_0L_{5,max}$	\sim		
cry high	$_{0}L_{6,min}$	$_{ m 0}L_{6,max}$	Risk Classes	Volatilit	y Intervals
			Risk Olisoco	σ_{min}	σ_{max}
			low	$_{0}\sigma_{I,min}$	$_{\theta}\sigma_{I,max}$
			medium-low	$_{\theta}\sigma_{2,min}$	$\partial \sigma_{2,max}$
			medium	$_{0}\sigma_{3,min}$	$d\sigma_{3,max}$
			medium -high	$_{0}\sigma_{4,min}$	$_{\theta}\sigma_{4,max}$
icates that this is	the initial inte	rval,	high	$_{0}\sigma_{5,min}$	$\partial \sigma_{5,max}$
before the calibr	ation		very high	$_{0}\sigma_{6,min}$	$\partial \sigma_{6, max}$
2			4		\odot

d

CONSOB

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

... to each Qualitative Risk Class is associated the corresponding annual Loss Interval (multiple of r_{ij} , σ' according to an exponential function) ...

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Step 1: Definition of the Loss Intervals of the Fund

... obtaining six initial loss intervals:

D'I CI	Loss Intervals				
Risk Classes	L_{min}	L_{max}			
low	$_{\theta}L_{1,min}$	$_{\theta}L_{1,max}$			
medium-low	$_{0}L_{2,min}$	0L2,max			
medium	$_{0}L_{3,min}$	$_{\theta}L_{3,max}$			
medium-high	$_{0}L_{4,min}$	$_{\theta}L_{4,max}$			
high	$_{0}L_{5,min}$	$_{\theta}L_{5,max}$			
very high	$_{ m 0}L_{6,min}$	$_{\theta}L_{6,max}$			

CONSOB

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

CONSOB

CONSOB

72

CONSOB CONSOB

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Hp.: n. of observations of σ_i = 250 for each trajectory

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: The Solution for the Asset Manager

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Step 3: Calibration of the Intervals

Application to Flexible Funds Risk Assessment: The Solution for the Asset Manager

Mapping of the QualitativeRisk Classes to corresponding Volatility Intervals σ_{max} 0.49% 0.50% 1 595 160 1 99 9.99 24.99 boxe 25.00 $\sigma_{\rm min}$ SAFE ASSETS

Application to Flexible Funds Risk Assessment: Quantitative Methodology for Risk Measurement

Syllabus

• Application to Flexible Funds Risk Assessment

- Key Concepts on Flexible Funds
- Transparency Regulation on the Risk Profile
- The Perspective of the Asset Manager
- · Quantitative Methodology for Risk Measurement
- The Solution for the Asset Manager
- Migration and Prospectus

CONSOB

Application to Flexible Funds Risk Assessment: The Solution for the Asset Manager

CONSOB CONSOB

Application to Flexible Funds Risk Assessment: Migration and Prospectus

Empirical Evidence on the European Industry: Preliminary Informations

Syllabus

- Application to Flexible Funds Risk Assessment
 - Key Concepts on Flexible Funds
 - Transparency Regulation on the Risk Profile
 - The Perspective of the Asset Manager
 - · Quantitative Methodology for Risk Measurement

• Empirical Evidence on the European Industry

• The Evolution of the Risk-Profile over time

• The Solution for the Asset Manager Migration and Prospectus

Application to Flexible Funds Risk Assessment: Migration and Prospectus

CONSOB CONSOB

Empirical Evidence on the European Industry: Preliminary Informations

Country	Total (A)	Selected (B)	Representativity (B/A)
Austria	17	13	76.5%
France	92	53	57.6%
Germany	63	45	71.4%
Ireland	2	1	50.0%
Italy	58	52	89.7%
Luxembourg	252	153	60.7%
Spain	224	130	58.0%
UK	8	7	87.5%
Total	<u>716</u>	<u>454</u>	<u>63.4%</u>

Syllabus

• Preliminary Informations

Empirical Evidence on the European Industry: Preliminary Informations

Histogram of the Volatility Time Series of the Flexible Funds selected

CONSOB

CONSOB

Empirical Evidence on the European Industry: Preliminary Informations

CONSOB

Empirical Evidence on the European Industry: Preliminary Informati

ITALY

Empirical Evidence on the European Industry: Preliminary Informations

Empirical Evidence on the European Industry: Preliminary Informations

Empirical Evidence on the European Industry: Preliminary Informations

Initial Distribution of the 454 Funds between the 6 risk classes

(perc. values)

		Initial Risk Class as from 1st January 2006								
Country	1	2	3	4	5	Total				
Austria	0.0%	0.0%	30.8%	61.5%	7.7%	<u>100%</u>				
France	0.0%	3.8%	17.0%	69.8%	9.4%	<u>100%</u>				
Germany	0.0%	4.4%	22.2%	57.8%	15.6%	<u>100%</u>				
Ireland	0.0%	100.0%	0.0%	0.0%	0.0%	<u>100%</u>				
Italy	1.9%	21.2%	21.2%	53.8%	1.9%	<u>100%</u>				
Luxembourg	0.7%	3.9%	19.6%	65.4%	10.5%	<u>100%</u>				
Spain	0.0%	17.7%	25.4%	47.7%	9.2%	<u>100%</u>				
UK	0.0%	0.0%	0.0%	71.4%	28.6%	<u>100%</u>				
Total	<u>0.4%</u>	<u>9.9%</u>	<u>21.4%</u>	<u>58.6%</u>	<u>9.7%</u>	<u>100%</u>				
V			106		ý	CONSO				

Syllabus

Medium

• Empirical Evidence on the Italian industry Preliminary Informations The Evolution of the Risk-Profile over time

Empirical Evidence on the European Industry: Preliminary Informations

Initial Distribution of the 454 Funds between the 6 risk classes (abs. values)

	Initial Risk Class as from 1st January 2006								
Country	1	2	3	4	5	Total			
Austria	0	0	4	8	1	<u>13</u>			
France	0	2	9	37	5	<u>53</u>			
Germany	0	2	10	26	7	<u>45</u>			
Ireland	0	1	0	0	0	1			
Italy	1	11	11	28	1	<u>52</u>			
Luxembourg	1	6	30	100	16	<u>153</u>			
Spain	0	23	33	62	12	<u>130</u>			
UK	0	0	0	5	2	7			
Total	<u>2</u>	<u>45</u>	<u>97</u>	<u>266</u>	<u>44</u>	<u>454</u>			
X		<u>CONSC</u>							

Empirical Evidence on the European Industry: The Evolution of the Risk Profile over time

MIGRATION

CONSOB

Number of Migrations occurred between different risk classes

over the period 01/01/2006 - 12/31/2007 (abs. values)

	Number of Migrations over the period January 2006 - December 2007									
Country	0	1	2	3	4	5	Total			
Austria	2	6	2	3	0	0	<u>13</u>			
France	20	13	8	11	1	0	<u>53</u>			
Germany	18	6	- 13	8	0	0	<u>45</u>			
Ireland	0	1	0	0	0	0	1			
Italy	15	12	17	8	0	0	<u>52</u>			
Luxembourg	63	28	34	23	4	1	<u>153</u>			
Spain	44	30	31	21	4	0	<u>130</u>			
UK	1	3	1	2	0	0	2			
Total	<u>163</u>	<u>99</u>	<u>106</u>	<u>76</u>	<u>9</u>	<u>1</u>	<u>454</u>			
0	20 DON 10 DO									

CONSOB CONSOB

Syllabus

Conclusions

References

Dixit, A. and Pindyck, R. (1994), "Investment under Uncertainty", Princeton University Press

Duan, J. (1997), "Augmented GARCH(p,q) Process and its Diffusion Limit", Journal of Economics, Vol. 79, 97-127

Ethier , S. N., Kurtz, T.G. (1986), "Markov Processes: Characterization and Convergence", Wiley, New York

Geweke, J., (1986), "Modeling the persistence of conditional variances: a comment", *Econometric Review*, 5, 57-61

Mihoj, A., (1987), "A multiplicative parameterization of ARCH models", Unpublished manuscript, Department of Statistics, University of Copenhagen.

Minenna, M., (2003), "The detection of market abuse on Financial markets: a quantitative approach", *Quaderno di Finanza n. 54*, Co.N.So.B.

CONSOB

Analysis of the Migrations *per* Country over the period 01/01/2006 – 12/31/2007 (perc. values)

Country	0	1	2	3	4	5	Total
Austria	15.4%	<u>46.2%</u>	15.4%	23.1%	0.0%	0.0%	100%
France	<u>37.7%</u>	24.5%	15.1%	20.8%	1.9%	0.0%	100%
Germany	<u>40.0%</u>	13.3%	28.9%	17.8%	0.0%	0.0%	100%
Ireland	0.0%	<u>100.0%</u>	0.0%	0.0%	0.0%	0.0%	100%
Italy	28.8%	23.1%	<u>32.7%</u>	15.4%	0.0%	0.0%	100%
Luxembourg	<u>41.2%</u>	18.3%	22.2%	15.0%	2.6%	0.7%	100%
Spain	<u>33.8%</u>	23.1%	23.8%	16.2%	3.1%	0.0%	100%
UK	14.3%	42.9%	14.3%	28.6%	0.0%	0.0%	100%

CONSOB

CONSOB

Conclusions

- ✓ GARCH Diffusive Approach to make robust and reliable Volatility Forecast (adaptiveness, no echoes effects)
- ✓ Financial Application to the Transparency regulation of Flexible Mutual Funds
 - mapping of qualitative risk classes to calibrated, increasing and non overlapping intervals of the annualized volatility of NAV returns
 - usefulness of this quantitative methodology to monitor the exposure to the migration risk and to promptly capture the occurrence of the migrations which requires a timely update of the Prospectus.

References

Nelson, D. B. (1990), "ARCH Models as Diffusion Approximations", Journal of Econometrics, Vol. 45, 7-38

Pantula, S., (1986), "Modeling the persistence of conditional variances: a comment", *Econometric Review*, 5, 71-74.

Stroock, D.W., Varadhan S.R.S., (1979), "Multidimensional diffusion processes", Springer Verlag, Berlin.

Taylor, S. J. (1986), "Modelling Financial Time Series", John Wiley and Sons, Chichester, UK

XXXII CONVEGNO AMASES - TRENTO, 1-4 SETTEMBRE 2008

Frequency of the Migrations over the period 01/01/2006 – 12/31/2007 (perc. values)

Country	0	1	2	3	4	5
Austria	1.2%	6.1%	1.9%	3.9%	0.0%	0.0%
France	12.3%	13.1%	7.5%	14.5%	11.1%	0.0%
Germany	11.0%	6.1%	12.3%	10.5%	0.0%	0.0%
Ireland	0.0%	1.0%	0.0%	0.0%	0.0%	0.0%
Italy	9.2%	12.1%	16.0%	10.5%	0.0%	0.0%
Luxembourg	<u>38.7%</u>	28.3%	<u>32.1%</u>	<u>30.3%</u>	<u>44.4%</u>	100.0%
Spain	27.0%	<u>30.3%</u>	29.2%	27.6%	<u>44.4%</u>	0.0%
UK	0.6%	3.0%	0.9%	2.6%	0.0%	0.0%
Total	100%	100%	100%	100%	100%	100%
X			111			(2) CONSOL

Conclusions

- ✓ Empirical Evidence:
 - the phenomenon of the migration interests more the funds which belong to the riskiest classes
- ✓ Closing Recommendations:

exploring other fields of application of the described methodology, especially to move faster towards a really levelled playing field

AN APPLICATION OF THE GARCH DIFFUSIVE APPROACH TO THE DEVELOPMENT OF VOLATILITY MEASURES ON THE RISK PROFILE OF MUTUAL FUNDS

