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Review of  FFT approach in option pricing

the single integration formula
Carr – Madan (1999)

where:
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Review of  FFT approach in option pricing

the single integration formula
Carr – Madan (1999)

Main Features
Only one integral to be computed (doubles speed in FT-Q methods)

Problems of  Accuracy reduced of  an order of   1/2

Arbitrary choice of  a dampening parameter
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FFT Implementation

Fast Fourier Transform Method – Implementation
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Quadrature Algorithms– theory 

Newton – Cotes Schemes 
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Newton – Cotes Schemes 

Quadrature Algorithms– theory 

They use a fixed, equally spaced, discretization grid 
for the characteristic formula

This implies that, if  the characteristic formula is smooth

Higher order of  integration = Better Accuracy
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Newton – Cotes Schemes 

Quadrature Algorithms– theory 

Unfortunately, the characteristic formula is OFTEN an
oscillatory function with abrupt changes

So, OFTEN, Newton – Cotes schemes fail in giving
accurate and stable prices
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Newton – Cotes Schemes 

Quadrature Algorithms– theory 

Higher order of  integration (greater than 8th) = 
Numerical Instability

If  the characteristic function goes to infinity, the NC 
schemes EXPLODE
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Fast Fourier Transform Method – The Pricing via Quadrature Algorithms

The Pricing via Newton-Cotes Algorithms

Trapezoid Rule
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The Pricing via Newton-Cotes Algorithms

Simpson Rule
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Fast Fourier Transform Method – The Pricing via Quadrature Algorithms

Under the following parameters specification 
(recombinant parameters)

NC Rules
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Fast Fourier Transform Method – The Pricing via Quadrature Algorithms

Under the following parameters specification 
(recombinant parameters)

NC Rules

The Call Prices are computed via Cooley-Tukey 
Algorithm
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FFT Implementation

Fast Fourier Transform Method – Implementation

Quadrature Algorithm

a b

N-C Gauss
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Gauss Schemes 
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Gauss Schemes 

Quadrature Algorithms– theory 

They use an optimal choice for the discretization grid

The discretization points are choosen in order to fit
perfectly a polynomial function

The schemes depend from the choice of  an optimization 
criterion
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Quadrature Algorithms– theory

Example: Gauss-Lobatto Quadrature Formula

LIMITED
to the interval (-1,1)
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Quadrature Algorithms– theory

whereImpossibile v isualizzare l'immagine.

is a Legendre Polynomial of  order N-1
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The Gautschi - Gander extension (2000)

ENHANCE
The Gauss Lobatto formula

They develop a GL recursive adaptive 
algorithm for a generic interval

Quadrature Algorithms– theory 
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The Gautschi - Gander extension (2000)

Quadrature Algorithms– theory 
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Quadrature Algorithms– theory

Impossibile v isualizzare l'immagine.

Accurate

The Extended GL scheme is both

Stable

Let’s see why
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Quadrature Algorithms– theory

Impossibile v isualizzare l'immagine. Accuracy

The Fundamental Theorem of  
Gaussian Quadrature states that 

the optimal abscissas of the N-point
Gaussian quadrature formulas are
precisely the roots of the orthogonal
polynomial for the same interval and
weighting function.



29

Quadrature Algorithms– theory

Impossibile v isualizzare l'immagine.

The Roots of  Legendre Polynomials are optimal discretization points

Accuracy
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Quadrature Algorithms– theory

Impossibile v isualizzare l'immagine.

Legendre Polynomials are oscillating functions

Stability
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Quadrature Algorithms– theory

Impossibile v isualizzare l'immagine.Legendre Polynomials are oscillating functions

Increasing the order of  N is useful to fit the
oscillatory decay of  the characteristic functions
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Quadrature Algorithms– theory

Impossibile v isualizzare l'immagine.Legendre Polynomials are oscillating functions

Even if  great, N remains finite, so the GL 
schemes cannot EXPLODE when the 
characteristic function goes to infinity
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Quadrature Algorithms– theory

Impossibile v isualizzare l'immagine.
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Fast Fourier Transform Method – The Pricing via Quadrature Algorithms

The Pricing via Gauss-Lobatto Algorithm

36

Fast Fourier Transform Method – The Pricing via Quadrature Algorithms

The Pricing via Gauss-Lobatto Algorithm

It requires a proper readjustment of  Cooley-Tukey 

Algorithm to take care of  the variable grid size
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Fast Fourier Transform Method – The Pricing via Quadrature Algorithms
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Pricing performance and calibration
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