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Review of Fourier Methods in Option Pricing — theory

R(@)P(0)=Pr(ln 5, 2 n[K])

under different martingale measures

<o

determined by using the Levy’s inversion formula, i.e.:

e

5
Pr(ln S, = In[K]) -2-+;IRe
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Example of derivation for Heston Model

PDE Derlvatlon for portfolle replieation

[

Pr(nS, > o[k = 2+ LR

a close formula for the Characteristic Function of the log — terminal price, i.e.:

'IrI (¢)= E{L,ml.., ]
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Example of derivation for Heston Model

PDE Shift into the forward space

Example of derivation for Heston Model

PDE Derlvatlon for portfollo replication
7= fi—A1fo— Do

the coefficients s, 1, are chosen in order
to vanish any randomness of the portfolio

T (9)= Efe=

a closed formula for AJD models
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In AJD models Call Price can be expressed in a form close to the
canonical Black — Scholes - Merton style

C,=5F(@)-Ke " P(O)

where

R(@)P.(0)="Pr(in 5, = n[K])

under different martingale measures
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Example of derivation for Heston Model

PDE Shift into Black-Scholes-Merton space

1,1, T) = Ke (T

GiSv.tT)=5A(

i -

Cifz vt =Rz, 7= KPizvr

Example of derivation for Heston Model
_PDE Derivatian for_portflio replication

radt

Example of derivation for Heston Model

dS; = pSdt + 0, Spdz Y

dve = k[ —ve]dt + o rdzY
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Example of derivation for Heston Model

PDE Shift into Black-Scholes-Merton space

8P, 8P, 188, .. 88 s g
T+ b rret)es S lete e a2l vap, s

Pl m e m

where ¢ =} & smnh, hmaed

by using Feynman Cac formula....

charncteristics of the probability messure P, at » generic time T

Pilge v, 7) = B (Trms 20K |20,50)

Example of derivation for Heston Model

PDE specification for the pricing of a Call option
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Example of derivation for Heston Model

PDE Shift into Fourier space

by using the Levy’s inversion formula... Iﬂ

) L gt
ze=g [T
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Example of derivation for Heston Model

PDE Shift into ODE space

by using the solution: [, (7..t,. 7 =0 £k, v, =¢
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Example of derivation for Heston Model

ODE Solutions
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Algorithms Valuation Criteria

STABILITY

The algorithm is defined stable if and only if

it "closes" the quadrature scheme

the pricing formula a "reasonable"
on a vast area of gives ) result different from
a

the parameters set. NaN value
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Algorithms Valuation Criteria

ACCURACY

The algorithm is defined accurate if and only if

Call via standard Black —
Scholes — Merton

the Call under the Black ~
Scholes - Merton model via:

Example of derivation for Heston Model

PRICING

V=8P - Ke TR
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How to compute: Cl

Quadrature Algorithm

FT - Q for Fast Fourier Transform
El@Lre) FFT

L L

OldFT-Q NewFT-Q
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PleLr(e) Quadrature Algorithm
. Ol FT-Q

Pros (+) Cons (-)

STABILITY
SPEED

ACCURACY

]
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PlELP(O) Quadrature Algorithm
' : New FT - Q

In order to overcome the cited problems of Old FT - Q:
o Gauss - Lobatto Quadrature Algorithm
® Re-adjustment of f; (¢)=E ""‘Iu\'-]

4=

C, =550@)-Ke Ple)

Algorithms Valuation Criteria

SPEED

The algorithm is defined fast with respect to

the results of the FFT algorithm

=

a set of 4100 prices along the strike
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rieLre) Quadrature Algorithm
! : OId FT - Q

High Order Newton Cotes
Algorithm

4=

C,=5Fk@)-KeFlo)

Up to 8th
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The Gautschi - Gander extension (2000)

4=

ENHANCE

‘The Gauss Lobatto formula

They develop a GL recursive adaptive
algorithm for a generic interval

i
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The Gautschi - Gander extension (2000)

PlELP6) Quadrature Algorithm
' : New FT - Q

In order to overcome the cited problems of Old FT — Q:
o Gauss - Lobatto Quadrature Algorithm
® Re-adjustment of f; (¢)=E ""‘Iu\'-]

4=

C, =550)-KePl@)
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e Basic Gauss - Lobatto Quadrature Formula
| -
f ohr 2=y f 1) +wyf(1)+ NEEA]
JII R } i f (=1) + wy f (1) Z [

2 LIMITED

to the interval (-1,1)
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PlELP6) Quadrature Algorithm
' : New FT - Q

In order to overcome the cited problems of Old FT — Q:
o Gauss - Lobatto Quadrature Algorithm
® Re-adjustment of fi¢)=E [ewns, ]

C, =5h0)-KePle)
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Example of re-adjstment for Heston Model

O = §P — KerlT-0p,
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Example of re-adjstment for Heston Model
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Fast Fourier Trasform
FFT

Cons ()

STABILITY

* The formula must be changed arbitrsily
‘according to Option moneyness

ACCURACY
#* the recombinant FFT parameters must be
changed sccording to the choice of the
pricing models

PlOLEO) m Quadrature Algorithm
: New FT - Q

Pros (+) Cons (-)

STABILITY SPEED
ACCURACY
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The Calibration Procedure and Performance
T P s iy Fast Foutier Trasform
SSE, —m_n:i[(.. S )=C (8 l] FFT

Pros (+) Cons ()

SPEED STABILITY *
ACCURACY **
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Syllabus of the presentation

* Review of Fourier Methods in Option Pricing
* Calibration and Performance
* Greek derivation

* Greek Behaviour of New FT-Q

C Fast Fourier Trasform
t FFT

Cooley - Tukey algorithm
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The Calibration Procedure and Performance

Ct via FT
¢ =ufg[R(©,0)]}

calibration of (v

SSE, = min 3 (€ (8,)-C oS |] Quadrature Algorithm
faC New FT - Q

Pros (+) Cons ()

STABILITY
ACCURACY
SPEED

SSE, = e I'g Z [r_\!m w(5)=Cnls, ]]

Tl _Taol

Quadrature Algorithm Fast Fourier Trasform
FT-Q FFT

L L

OIdFT-Q NewFT-Q

C Fast Fourier Trasform
t FFT

Cooley - Tukey algorithm

Applied to the equivalent formula via a recombinant FFT parameters

g oK

=" fn e E (9)dg  foraT™
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The Calibration Procedure and Performance
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by minimizin
C, via PDE y gCt via FT
C. =h[R(©),P,(6)] ¢ =uf{g[PO0)]}

=

calibration of (¥

By keeping in mind that only New FT-Q is stable and accurate,
some figures on speed

Original Option Pricing Formulas are used

FET 726sec. | 10.54sec. | 18.33 sec.
NEW FT-Q 5512 sec. | 66.48 sec. | 11039 sec.
OLD FT - Q [390 41 sec. | 454.76 sec. | 7221 sec.

By now, the speed of Fourier Trasform method is closer
than ever to the FFT calibration time

SSE ;,"i“\"‘[.:-__ W8 )=C ols ;]m Quadrature Algorithm
ne & H OId FT - Q

Pros (+) Cons ()

STABILITY
ACCURACY
SPEED
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Ct via FT - spanning Q©, o

Stochastic volatility models
Low volatility Short maturity

er

Calibration Performances using

Option Readjusted Pricing Formulas
where available

Heston Model ‘Merton Model BCC Model

7.24 sec. 10.54 sec. 18.32 sec.

FFT

Heston Model Merton Model BCC Model

NEWFT-Q 2313 sec. | 6648 sec. | 48.7 sec.

Heston Model ‘Merton Model BCC Model

OLD FT = Q ["3316 scc. | 454.76 scc. | 688.5 sec.
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Ct via FT - spanning Q, «

Stochastic volatility models
High volatility Short maturity

er
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Ct via FT - spanning Q,

Stochastic volatility models
Low volatility Long maturity
er 1

S
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C. via FT - spannin, 0.«
t P g O,
Jump Diffusion models

Long maturity
er s

Low volatility

=

Greek derivation

Example of derivation for Heston Model
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Heston Delta

Lambda = -2

CappaV =2
ThetaV = 0.3
Etav=0.1

Rho=0

Ct via FT - spanning ©, o
Stochastic volatility models
High volatility Long maturity
er T o e— I
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C. via FT - spanning ©, o
t P g O,

Jump Diffusion models
High volatility

Long maturity
er 0
.
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Ct via FT - spanning Q, o

Jump Diffusion models
Low volatility

Short maturity
er
r
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* Review of Fourier Methods in Option Pricing
* Calibration Procedure and Performance

* Greek derivation

¢ Greek Behaviour of New FT-Q

An impressive methodology to test Stability of the
New FT — Quadrature algorithm is to compute Greeks

Infact, in an AJD setting the Greeks are available in
closed form

So, an extended spanning of the AJD Greeks on the
parameters set is useful to assess models and test
Stability

Heston Delta

Lambda = 2 I

CappaV =2
ThetaV = 0.3
Etav=0.1

Rho=0

£2CONSOB

Heston Delta

Rho =-1

CappaV =2
ThetaV = 0.3
Etav =0.1

Lambda = 0
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Ct via FT - spanning Q, o
Jump Diffusion models
High volatility

Short maturity
er 3
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Greek derivation
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In AJD models Greeks can be derived by using the following equivalences

Black — Scholes Delta

200
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Heston Delta

Rho=1

CappaV =2
ThetaV = 0.3
Etav=0.1

Lambda =0
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