

Forecasting Volatility through GARCH Diffu	sive Approach			
OTHER GARCH PROCESSES Analogous Procedure				
THE DIFFUSION LIMIT OF THE E-GARCH(1,1)	THE DIFFUSION LIMIT OF THE L-GARCH(1,1			
Given the E-GARCH(1,1) model:	Given the E-GARCH(1,1) model:			
$\ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + \beta_1^{(k)} \ln \sigma_k^2 + \beta_2^{(k)} \left(Z_k + \vartheta Z_k \right)$ Ze is N(9.1)	$\sigma_{k+1}^2 - \sigma_k^2 = \omega + \sigma_k^2 (\beta + \varpi Z_k^2 - 1)$ $Z_k \text{ is } N(0, l)$			
its diffusion limit is:	its diffusion limit is:			
$ \begin{array}{ll} d\ln\sigma_t^2 &=& \left[\alpha_0+\frac{2}{\sqrt{2\pi}}\left(\alpha_4+\frac{\alpha_5}{2}\right)-\alpha_4-\alpha_5-\alpha_1-1+(\alpha_1-1)\ln\sigma_t^2\right]dt\\ && -\frac{\alpha_5}{2}dW_t+\left \alpha_4+\frac{\alpha_5}{2}\right \sqrt{\frac{\pi-2}{\pi}}dW_t^* \end{array} $	$d\sigma_t^2 = [\omega + \vartheta \sigma_t^2] dt + \sqrt{2} \overline{\omega} \sigma_t^2 dW_t$			
33	CONSOB			

GARCH Diffusive	e Approach vs Mu	tual Funds' Risk Ass	essment	
THE SOLUTION THROUGH THE GARCH DIFFUSIVE APPROACH: mapping of the qualitative risk classes to calibrated volatility intervals				
Step 1: "Arbitrary" Definition of Fund Loss Intervals (e.g. using the VaR)				
	Fund Risk Classes	Fund Loss Intervals min max		
	low			
	medium- low			
	medium			
	medium-high			
	high			
	very high]	
		47	CONSOB	

GARCH Diffusi	ve Approach vs Mutual Funds' Risk Assessment	
THE SOLU mapping	TION THROUGH THE GARCH DIFFUSIVE APPROACH:	Þ
Step 2: Mapping Fu derived from the ca	and Loss Intervals to corresponding Fund Volatility Intervals libration of a suitable GARCH Diffusion Model	
Fund Rick Classes Fand Loss Intered- antis antis antis inversion for antis medican kigh Najak		•
	48 CONS	OB

CONCLUSIONS

Volatility is a crucial risk measure in finance:
 wide range of of applications
 driver of other risk measures

Volatility varies randomly over time

• The GARCH Diffusive Approach allows to model the stochastic process of the volatility and to make forecasts based on reliable prediction intervals

• The GARCH Diffusive Approach can be usefully implemented in the mutual funds industry to forecast volatility, to evaluate the risk exposure, and, consequently, to select the optimal portfolio allocation given the full knowledge of the risk undertaking associated to each possible alternative

