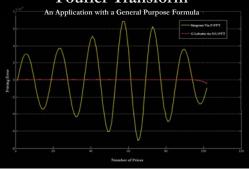
Fractional vs Non Uniform Discrete Fourier Transform



Marcello Minenna - Paolo Verzella

The Lewis Standard Machine

 $\phi_T(z) = E^{\mathcal{Q}}[e^{iz\ln S_t}]$ under risk-neutral measure

A linear direct mapping from Fourier Spectral Space

LEWIS REPRESENTATION

The Lewis Standard Machine

$$z=\xi+i\alpha$$

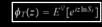
		2 - 5 4
Financial Claim	w(x)	$\widetilde{w}(x)$
Call Option	$\max \big[S_T - K, 0 \big]$	$-\frac{K^{m+1}}{z^2-iz}, \ \alpha>1$
Put Option	$\max \big[K\!-\!S_T,0\big]$	$-\frac{K^{m+1}}{z^2-iz}$, $\alpha < 0$
Covered Call	$\min[S_T, K]$	$\frac{K^{m+1}}{z^2 - iz}$, $0 < \alpha < 1$
Money Market	1	$2\pi\delta(k), \alpha \in \mathbb{R}$
Self Quanto Call	$\max \big[S_T - K, 0 \big] \cdot S_T$	$\frac{K^{2+2iz}}{\left(zi+1\right)^{\mathcal{S}_T}\left(zi+2\right)^{\mathcal{S}_T}}, \ \alpha < -2$
Power Call	$\max[S_T - K, 0]^d$	$\frac{K^{d(\log)}\Gamma(z)\Gamma(d+1)}{\Gamma(z+d+1)},\alpha\!<\!-d$

Syllabus of the presentation

- Review of Option Pricing via DFT
- •The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions

The Lewis Standard Machine

is the PayOff functional's Transform



under risk-neutral measure

A linear direct mapping from Fourier Spectral Space

$$V_{t} = \frac{e^{-r(T-t)}}{2\pi} \int_{ia-\infty}^{ia+\infty} e^{-iz\ln K} \phi_{T}(-z) \int_{-\infty}^{+\infty} e^{-izx} w(x) dx dz$$

Syllabus of the presentation

- Review of Option Pricing via DFT
 - The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids

Syllabus of the presentation

- Review of Option Pricing via DFT
- The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

The Lewis Standard Machine

implies reducing the problem to the calculation of a single integral

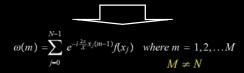
DFT Convergence to FT

Given the General DFT

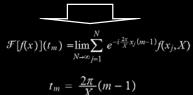
$$\omega(m) = \sum_{i=0}^{N-1} e^{-i\frac{2\pi}{N}x_j(m-1)} f(x_j)$$
 where $m = 1, 2, ...M$

DFT Convergence to FT

Given the General DFT



The Convergence Theorem for General DFT's (C Th)





<u>CONSOB</u>

€ CONSOB

DFT Convergence to FT

<u>CONSOB</u>

Condition 2

Syllabus of the presentation

- Review of Option Pricing via DFT
 - The Lewis Standard Machine
 - · DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids

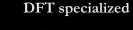
Convergence Theorems for Uniform Grids

Condition 1

Uniform Discretization Grid



Convergence Theorems for Uniform Grids



$$\omega(n) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(n-1)} f(x_j) \text{ where } n=1,2,...,N$$

€ CONSOB

Convergence Theorems for Uniform Grids

Condition 1

Condition 2

DFT Simplified Formula

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi kj\gamma} f(x_j)$$
 where $n = 1...N$

Convergence Theorems for Uniform Grids

Nyquist - Shannon Limit (N-S)

$$\mathcal{F}[f(x)](t_n) = \lim_{N \to \infty} \frac{X}{N} \omega(n)$$

$$\{t_n\}_{n=1..\frac{N}{2}}$$
 for N even

$$\{t_n\}_{n=1\dots\frac{N+1}{2}}$$
 for N odd

Convergence Theorems for Uniform Grids

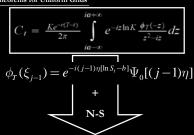
$$C_{t} = \frac{Ke^{-i(T-t)}}{2\pi} \int_{ia-\infty}^{ia+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

Uniform Discretization Grids for ϕ_I

1.
$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_i - b]} \Psi_0[(j-1)\eta]$$

2.
$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_i - b]} \Psi_0[(j-1)\eta] \cdot [3 + (-1)^{j+1} - \delta_j - \delta_{N-j}]$$

1.



$$C_0[\ln K]_u^- \approx \frac{e^{-\alpha[\ln S_t - b + \lambda(u-1)]}}{b} \cdot \Re(\omega(u))$$

19

Syllabus of the presentation

- Review of Option Pricing via DFT
 - The Lewis Standard Machine
 - DFT Convergence to FT
 - · Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids

22

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

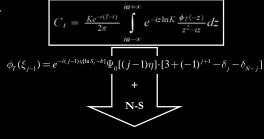
Optimal choice of discretization points

Zeros of Laguerre Poynomials

€ CONSOB

Convergence Theorems for Uniform Grids

2.

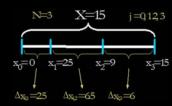


<u>CONSOB</u>

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Non Uniform Discretization Grid



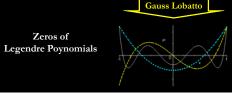
23

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points



Convergence Theorems for Uniform Grids

The Call Price computed via Convergence Theorem is equal to the Call Price computed via Trapezoid/Simpson Quadrature Rule

€ CONSOB

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points

24

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points

Convergence Theorems for Non Uniform Gaussian Grids

Gaussian Grids for ϕ_7

1.
$$\phi_{T}(\xi_{j-1}) = e^{\left[1+i\left(\frac{M\tau}{a^{T}}-\ln S_{j}\right)\right]\xi_{j-1}}\Psi_{0}[\xi_{j-1}]\cdot\frac{1}{L_{N+1}(\xi_{j-1})L_{N}(\xi_{j-1})}$$

$$2. \ \phi_{T}\bigg(\frac{1}{2}a\big(1+\xi_{j-1}\big)\bigg) = e^{\left[-\frac{1}{4}\frac{1}{2}a(1+\xi_{j-1})\right]\left\|\mathbf{n}S_{i} - \frac{M\pi}{a^{*}}\right\|}\Psi_{0}\bigg[\frac{1}{2}a\big(1+\xi_{j-1}\big)\bigg] \cdot \frac{1}{\left[P_{N-1}\left(\xi_{j-1}\right)\right]^{2}}$$

Theorems of

The Call Price computed via Convergence Theorem is equal to the Call Price computed via Gauss Laguerre/Gander Gautschi

Quadrature Rule

€ CONSOB

Condition 2

N≠M

General DFT

$$\omega(m) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j) \text{ where } m=1,2,...,2M$$

© CONSOB

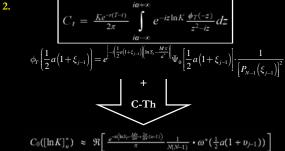
Convergence Theorems for Non Uniform Gaussian Grids

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{i\alpha-\infty}^{i\alpha+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T}(\xi_{j-1}) = e^{\left[1+\left[\frac{M\pi}{a^{+}} - \ln S_{j}\right]\left[\xi_{j-1}\right]} \Psi_{0}[\xi_{j-1}] \cdot \frac{1}{L_{N+1}\left(\xi_{j-1}\right)L'_{N}\left(\xi_{j-1}\right)} + \frac{1}{\text{C-Th}}$$

$$C_0([\ln K]_u^*) \approx -\Re\left[\frac{e^{-a\left(\ln S_r - \frac{M\sigma}{2} + \frac{2\sigma}{\sigma^2}(n-1)\right)}}{\pi} \frac{1}{N+1} \cdot \omega^*(u)\right]$$

Convergence Theorems for Non Uniform Gaussian Grids



The Convergence Theorem

for General DFT's (C Th)

 $\mathcal{F}[f(x)](t_m) = \lim_{N \to \infty} \sum_{j=1}^{N} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j, X)$

 $t_m = \frac{2\pi}{V}(m-1)$

Syllabus of the presentation

· Review of Option Pricing via DFT

- •The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

• Fast Option Pricing

- · Fractional FFT
- Non Uniform FFT

•Gaussian Gridding: a matter of interpolation

- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions

$$C_0([\operatorname{Im} \mathbf{K}]_u) \approx \pi \underbrace{\prod_{\pi} \frac{1}{N(N-1)} \cdot \omega \left(\frac{1}{2}\omega(1+b_{j-1})\right)}_{N(N-1)}$$

Fast Option Pricing

Fast Fourier Trasform Algorithms

Fast Option Pricing

Fractional FFT

NonUniform FFT

Fractional FFT

Bayley-Swarztrauber F-DFT Characterization

$$\omega(n) = \sum_{i=0}^{N-1} e^{-i2\pi k j \gamma} f(x_j) \quad where \quad n = 1...N$$

with γ that can be any complex number

Fractional FFT

Choosing two indipendent uniform grids

Implies choosing a specific value of γ

$$\gamma = \frac{\lambda g\left(\frac{a}{N}\right)}{2\pi}$$

Syllabus of the presentation

- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 - Conclusions

© CONSOB

Fractional FFT

If
$$\gamma = \frac{1}{N}$$

$$\omega(n) = \sum_{i=0}^{N-1} e^{-i\frac{2\pi}{N}j(n-1)} f(x_j) \quad \text{where } n = 1, 2, ... N$$

The standard DFT definition

Fractional FFT

Fast Fractional Reconstruction

Calculate sequences of 2N points

CONSOB

Fractional FFT

Bayley-Swarztrauber F-DFT Characterization

$$\omega(n) = \sum_{j=0}^{N-1} e^{-j2\pi kj\gamma} f(x_j) \text{ where } n = 1...N$$

€ CONSOB

Fractional FFT

Choosing two indipendent uniform grids

$$x_j = jg\left(\frac{a}{N}\right)$$
 for $j = 1...N$

Spectral Grid

$$[\ln K]_{u}^{+} = \ln S_{t} - b + \lambda_{u} \quad for \ u = 1, \dots, N$$

Log-Strike Grid

Fractional FFT

Fast Fractional Reconstruction

$$y = \left\{ \left(f\left((j-1)g\left(\frac{\alpha}{N}\right)\right) e^{-i\pi j^2 \gamma} \right)_{j=0}^{N-1}, (0)_{j=0}^{N-1} \right\}$$

$$z = \left\{ \left(e^{i\pi j^2 \gamma} \right)_{j=0}^{N-1}, \left(e^{i\pi (N-j)^2 \gamma} \right)_{j=0}^{N-1} \right\}$$

Fast Fractional Reconstruction

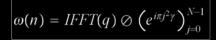
Calculate

$$w = \psi_0 \left((j-1)g\left(\frac{a}{N}\right) \right) \odot \left(e^{i\pi(N-j)^2 \gamma} \right)_{j=0}^{N-1}$$

Fractional FFT

Fast Fractional Reconstruction

Calculate

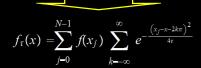


Non Uniform FFT

Gaussian Gridding

Step 1

Gaussian Convolution of the non uniformly sampled characteristic function



Fast Fractional Reconstruction

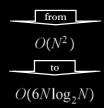
Calculate via standard FFT

$$|\overline{w} = FFT(w), \overline{z} = FFT(z)$$

Fractional FFT

Fast Fractional Reconstruction

The total computational cost drops

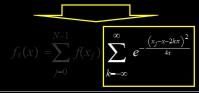


Non Uniform FFT

Gaussian Gridding

Step 1

Gaussian Convolution of the non uniformly sampled characteristic function



Fast Fractional Reconstruction

Calculate

$$q = \overline{w} \odot \overline{z}$$

€ CONSOB

Syllabus of the presentation

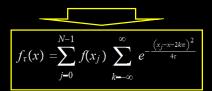
- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - · Convergence Theorems for Uniform Grids
 - · Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analsysis
 - Conclusions

Non Uniform FFT Single Components **€** CONSOB

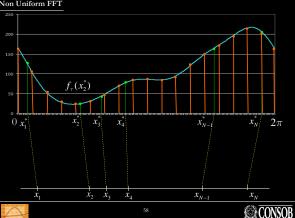
Gaussian Gridding

Step 1

Gaussian Convolution of the non uniformly sampled characteristic function



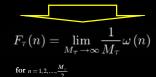
Non Uniform FFT



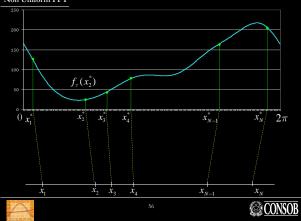
Non Uniform FFT

Gaussian Gridding

DFT representation of the Fourier Coefficient $F_{\tau}(n)$



Non Uniform FFT



Non Uniform FFT

Gaussian Gridding

Computation of the Fourier Coefficient of $f_{\varepsilon}(x)$ discretised

$$F_{\tau}(n) = \lim_{M_{\tau} \to \infty} \frac{1}{M_{\tau}} \sum_{m=0}^{M_{\tau}-1} \widetilde{f}_{\tau} \left(m \frac{2\pi}{M_{\tau}} \right) e^{-im\frac{2\pi}{M_{\tau}}(n-1)}$$

Non Uniform FFT

Gaussian Gridding

Step 6

NU-DFT derivation as a function of DFT

$$\widetilde{\omega}(n) = \lim_{M_{\tau} \to \infty} \frac{1}{M_{\tau}} \omega(n)$$

$$\widetilde{\omega}(n) = \sqrt{\frac{\pi}{\tau}} e^{n^{2} \tau} F_{\tau}(n)$$

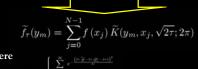
$$\widetilde{\omega}(n) = \lim_{M_{\tau} \to \infty} \sqrt{\frac{\pi}{\tau^{*}}} e^{n^{2} \tau^{*}} \frac{1}{M_{\tau}} \omega(n)$$
for $n = 1, 2, \dots, \frac{M_{\tau}}{2}$

© CONSOB

Non Uniform FFT

Gaussian Gridding

Discretization on an uniform oversampled grid of $f_{\tau}(x)$



CONSOB

Non Uniform FFT

Gaussian Gridding

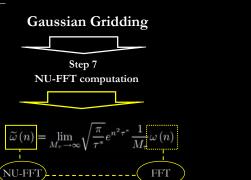
NU-DFT representation of the Fourier Coefficient $F_{\tau}(n)$

$$\widetilde{\omega}(n) = \sqrt{\frac{\pi}{\tau}} e^{n^2 \tau} F_{\tau}(n)$$

Non Uniform FFT

Gaussian Gridding

$$\widetilde{\omega}(n) = \lim_{M_{\tau} \to \infty} \sqrt{\frac{\pi}{\tau^*}} e^{n^2 \tau^*} \frac{1}{M_{\tau}} \omega(n)$$
FFT



<u>© CONSOB</u>

€ CONSOB

Empirical Analysis

ACCURACY

Empirical Analysis

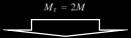
STABILITY

Non Uniform FFT

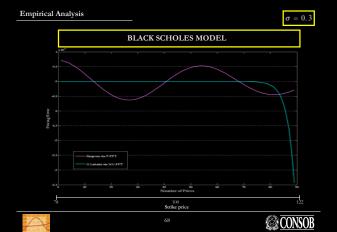
Computational Cost

The major computational cost of the Procedure is the FFT on the oversampled grid

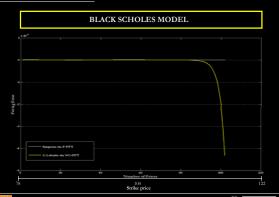
Choosing the oversampling ratio



The total cost of the procedure is $\approx 2M \log 2M$



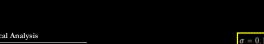
Empirical Analysis

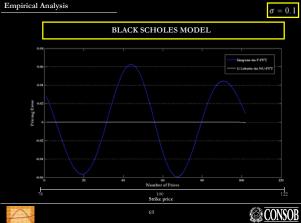


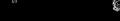
Syllabus of the presentation

- Review of Option Pricing via DFT
- •The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analsysis
 - Conclusions

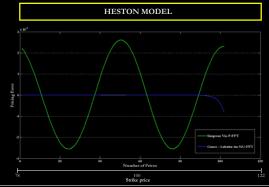
© CONSOB







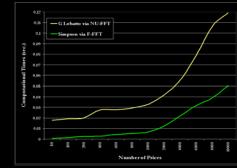
Empirical Analysis



<u>CONSOB</u>

Empirical Analysis

Empirical Analysis

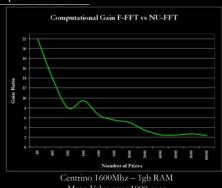


Centrino 1600Mhz - 1gb RAM Mean Value over 1000 runs

SPEED

<u>© CONSOB</u>

The Computational Framework



MERTON MODEL

Mean Value over 1000 runs

© CONSOB

Empirical Analysis

At very low time scales, the differences are negligible

<u>CONSOB</u>

Syllabus of the presentation

- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
- Fractional FFT
- Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analsysis
- Conclusions

Conclusions

Conclusions

Conclusions

Use of Gaussian Grids

F-FFT	NO
NU – FFT	YES

Indifference to Nyquist-Shannon Limit

F-FFT	YES
NU – FFT	YES

Indipendent Price Grids

F-FFT	YES
NU – FFT	YES

Conclusions Conclusions Conclusions

FFT's like - Accuracy

F-FFT	YES
NU – FFT	YES

Ο.	• • •	• .			•	
Sta	hil	1177	O.t	J40	10	่กഉ
oıa	$\nu_{\rm LL}$	Trv.	UL	ц.	LU.	1112

F-FFT	NO
NU – FFT	YES

Speed of Pricing

F-FFT	YES
NU – FFT	YES

Conclusions

	F-FFT	NU – FFT
Gaussian Grids		
NS Limit		
Indipendent Grids		
Accuracy		
Stability		
Speed		

