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FT Pricing Formulas
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Gaussian Grids for f
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FFT Cooley – Tukey Algorithm
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Uniform FFT

The problem of
Nyquist relation
can be overcome

ONLY using the
Fractional FFT - Chourdakis (2005)

at the cost of  increasing 
complexity

via FFT
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Step 3

Gaussian Gridding

Computation of  the Fourier Coefficient of           discretised

Non Uniform FFT

( )f xt
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Step 4

Gaussian Gridding

NU-DFT representation of  the Fourier Coefficient
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( )F nt
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Step 5

Gaussian Gridding

DFT representation of  the Fourier Coefficient
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( )F nt

for 1,2,....,
2
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Step 6

Gaussian Gridding

NU-DFT derivation as a function of  DFT
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Gaussian Gridding

NU-DFT derivation as a function of  DFT
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Gaussian Gridding

Non Uniform FFT

Step 7
NU-FFT computation

NU-FFT FFT
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The major computational cost of  the
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The major computational cost of  the
Procedure is the FFT on the oversampled grid

Choosing the oversampling ratio

The total cost of  the procedure is

Computational Cost

Non Uniform FFT
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The Computational Framework
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The Computational Framework
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The Computational Framework

Weighted Absolute Mean Error
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The Computational Framework

The error of  90% of  prices 
computed lies in the

RANGE OF PRECISION
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SPEED

The Computational Framework

FFT

NU FFT
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SPEED

The Computational Framework

the NU – FFT is around
2 time slower than FFT
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SPEED

The Computational Framework

At very low time scales, the
differences disappear

FFT
NC2 G – LA G - LO

0.01 sec. N/A N/A

NU – FFT
NC2 G - LA G - LO

0.02 sec. 0.0261 sec. 0.0301 sec.

Computation of  4000 prices on a Centrino 1600Mhz – 2gb 
RAM

Mean Value over 1000 runs
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• NU – FFT is at least as accurate as FFT
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Conclusions

• NU – FFT does not need the Nyquist relation

• NU – FFT speed performances are indistinguishable
from FFT’s ones
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NU – FFT
is a natural candidate for

operational use on trading desks

Conclusions


