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DFT Convergence to FT

The Convergence Theorem
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Convergence Theorems for Uniform Grids
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Convergence Theorems for Uniform Grids

Theotrems of

The Call Price computed via Convergence
Theorem is equal to the Call Price computed

via Trapezoid/Simpson Quadrature Rule
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Fast Option Pricing
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CI via DFT

Fast Fourier Trasform
Algorithms

Theorems of
The Call Price computed via Convergence
Theorem is equal to the Call Price computed

via Gauss Laguerre/Gander Gautschi
Quadrature Rule
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Fast Option Pricing

CI via DFT

NonUniform FFT
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the pricing formulas
Give accurate prices
ONLY
Around the Nyquist Frequency
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FFT Cooley — Tukey Algorithm
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The grids cannot be independently choosen




Uniform FFT

The problem of
Nyquist relation
can be overcome
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Step 1
Gaussian Convolution of the non uniformly sampled
characteristic function
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Non Uniform FFT
Single Components
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Step 2

Discretization on an uniform oversampled grid of f.(X)
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Step 4
NU-DFT representation of the Fourier Coefficient F_(n)
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Non Uniform FFT

Gaussian Gridding
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Step 5
DFT representation of the Fourier Coefficient F_(n)
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Step 3
Computation of the Fourier Coefficient of f_(x) discretised
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Step 6
NU-DFT derivation as a function of DFT
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Step 6
NU-DFT derivation as a function of DFT
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Step 7
NU-FFT computation
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Non Uniform FFT

Gaussian Gridding
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Step 7
NU-FFT computation
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Non Uniform FFT

Computational Cost
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The major computational cost of the
Procedure is the FFT on the oversampled grid
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Choosing the oversampling ratio
M, =2M
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The total cost of the procedure is ~ 2Mlog2M

Non Uniform FFT
Gaussian Gridding
Step 7
NU-FFT computation
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—I L

Choosing the oversampling ratio
M, =2M

s €300%0B

The Computational Framework

ACCURACY




The Computational Framework ‘The Computational Framework The Computational Framework

0™ Pricing Error - BS Model via DFT

STABILITY

-5 i == O S— =
65 0 8 90 95 100
Strike Price
2000 Prices computed ‘Weighted Absolute Mean Error

2008 ” €2 00NS0B i o €3 C0NSOB mna g {300NS0B

The Computational Framework The Computational Framework The Computational Framework
£10" Pricing Error - BS Model via DFT
T T T v T T T Heston Model
it 015 v - - - S .
i 01
5 ows
S =t
i H
s o
E
i = 005
-
-1
wh
o 500 1000 1300 W00 2500 3000 3500 4000
12 . . . . . 4o
0 500 1000 1500 2000 2500 @ £l Veices &
Prices (Number of) h . ]
f | |
65 108 15.1 Weighted Absolute Mean Error
Strike price

e €CONS0B e €300N50B e :

The Computational Framework ‘The Computational Framework The Computational Framework

STABILITY

—I L

The error of 90% of prices
computed lies in the

Merton Model
045 = - = i ziadl

Absalite Mean Frrar

S S S S N S—
500 1000 1500 20W 2500 3000 3300 4000
Number of Prices

Weighted Absolute Mean Error

2008 - €2CONSOB g g €2C0NS0B soms " CONSOB




The Computational Framework

STABILITY
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The error of 90% of prices
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The Computational Framework
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The Computational Framework
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At very low time scales, the
differences disappear
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The Computational Framework
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Conclusions

* NU - FFT allows the use of Gaussian Grids
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At very low time scales, the
differences disappear

NC2 G-LA G-LO
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Computation of 4000 prices on a Centrino 1600Mhz — 2gb
RAM
Mean Value over 1000 runs
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the NU - FFT is around
2 time slower than FFT
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Conclusions

NU - FFT
is a natural candidate for
operational use on trading desks
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Conclusions

* NU - FFT allows the use of Gaussian Grids

* NU - FFT is indifferent to Nyquist _Shannon Limit
* NU - FFT does not need the Nyquist relation

* NU — FFT is at least as accurate as FFT

* NU - FFT is more stable than FFT

* NU - FFT speed performances are indistinguishable
from FFT’s ones
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