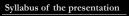

Further Developments in Semianalytical **Derivatives Pricing**

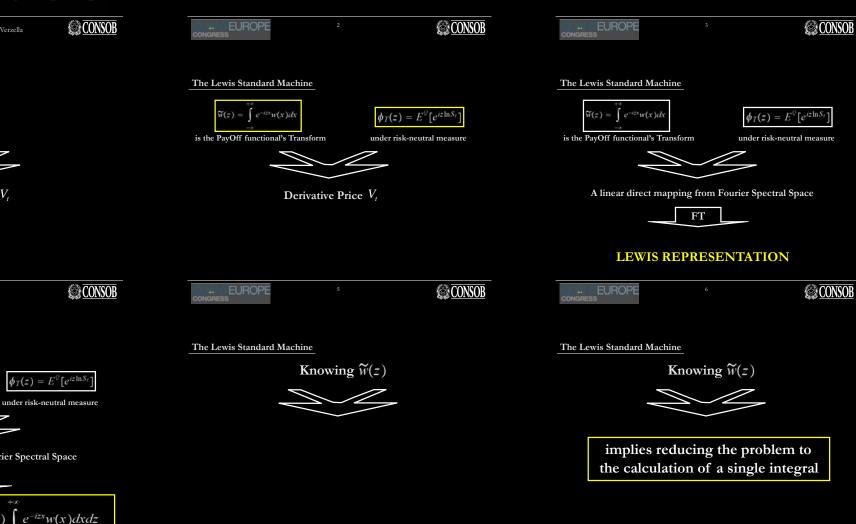


The Lewis Standard Machine

Derivative Price V_t

Review of Derivative Pricing via DFT

- The Lewis Standard Machine
- · DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids


Fast Derivative Pricing

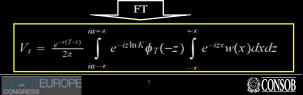
- Fractional FFT
- Non Uniform FFT
- •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions

Syllabus of the presentation

• Review of Derivative Pricing via DFT

- The Lewis Standard Machine
- DFT Convergence to FT
- · Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids

The Lewis Standard Machine

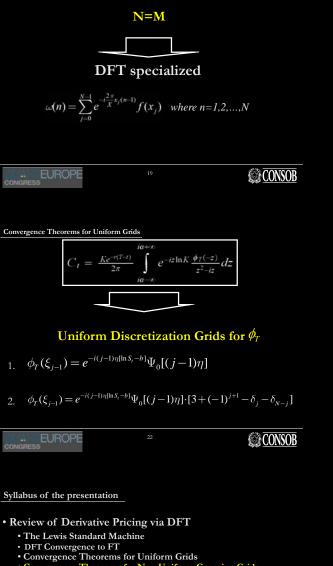

 $\widetilde{w}(z) = \int e^{-izx} w(x) dx$

 $\phi_T(z) = E^{\mathcal{Q}} [e^{iz \ln S_t}]$

is the PayOff functional's Transform

The Lewis Standard Machine

The Lewis Standard Machine		The Lewis Standard Machine				Syllabus of the presentation					
<i>z</i> =	$=\xi + i\alpha$			<i>z</i> = ξ	$i + i\alpha$	• Review of Derivative Pr					
		Financial Claim	w(x)	$\tilde{w}(x)$		 The Lewis Standard Ma DFT Convergence to FT 					
		Call Option	$\max \left[S_{7}-K,0\right]$	$-\frac{K^{m+1}}{z^2-iz}, \alpha > 1$		Convergence Theorems for Uniform Grids Convergence Theorems for Non Uniform Gaussian Grid					
		Put Option	$\max \left[K - S_T, 0 \right]$	$-\frac{K^{\alpha+1}}{z^2-iz}, \ \alpha < 0$							
		Covered Call	$\min[S_T, K]$	$\frac{K^{\#+1}}{z^2 - iz}$, $0 < \alpha < 1$							
		Money Market	1	$2\pi\delta(k), \alpha \in \mathbb{R}$							
		Self Quanto Call	$\max \big[S_T - K, 0 \big] \cdot S_T$	$\frac{K^{2+2\alpha}}{(zi+1)^{S_{7}}(zi+2)^{S_{7}}}, \ \alpha < -2$	2						
		Power Call	$\max \left[S_T - K, 0 \right]^d$	$\frac{K^{d(set)}\Gamma(it)\Gamma(d\!+\!1)}{\Gamma(it\!+\!d\!+\!1)},\alpha\!<\!-\!d$,						
	CONSOB	EUROPE	11		CONSOB	CONGRESS	12	CONSOB			
DFT Convergence to FT	_	DFT Convergence to F	<u>T</u>			DFT Convergence to FT					
						The Conv	ergence Theorem				
Given the General DFT		Given the General DFT					ral DFT's (C Th)				
<i>N</i> -1		<i>N</i> -1				of the same same	$\sum_{i=1}^{N} \frac{-i\frac{2\pi}{2\pi}r_i(m-1)}{m} \alpha$				
$\omega(m) = \sum_{i=0}^{N-1} e^{-i\frac{2\pi}{A}x_j(m-1)} f(x_j) \text{ where } m = 1, 2, \dots$. <i>M</i>	$\omega(m) = \sum_{i=1}^{n} e^{-i}$	$\frac{2\pi}{X}x_j(m-1)f(x_j)$ w	<i>there</i> $m = 1, 2, M$	ſ	$\mathcal{F}[f(x)](t_m) = $	$\lim_{N\to\infty}\sum_{j=1}^N e^{-i\frac{2\pi}{X}x_j(m-1)}f(x_j,X)$				
<i>j=</i> 0		$\omega(m) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{N}x_j(m-1)} f(x_j) \text{where } m = 1, 2, \dots M$ $M \neq N$				$t_m=\frac{2\pi}{X}(m-1)$					
	CONSOB	4) EUROPE CONGRESS	14		CONSOB		15	CONSOB			
DFT Convergence to FT		Syllabus of the presentation				Convergence Theorems for Uniform	Grids				
	•	• Review of Derivati		DFT		Condition 1					
$C_{0{ m via}{ m FT}}$		DFT Convergence Convergence Theo	to FT	n Grids		Uniform	Discretization Grid				
	_	• Convergence Theo	orems for Non U	niform Gaussian Grid	ds		X=15				
Convergence theorems	-										
$\overrightarrow{C_0}$ via DFT						x ₀ =0 x	=5 x ₂ =10 x ₃ =15				
							$\Delta x = \frac{15}{3} = 5$ j=0,12,3				
CONGRESS	CONSOB	L. EUROPE	17		CONSOB	CONGRESS	18	Description of the second seco			



Convergence Theorems for Uniform Grids

Convergence Theorems for Uniform Grids

Condition 1

Convergence Theorems for Uniform Grids

Convergence Theorems for Non Uniform Gaussian Grids

DFT Simplified Formula

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi k j \gamma} f(x_j)$$
 where $n = 1...N$

EUROPE

1.

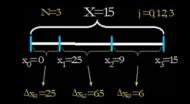
CONSOB

Condition 2

$$C_{i} = \frac{Ke^{-i(T-i)}}{2\pi} \int_{ia=-\infty}^{ia+\infty} e^{-iz \ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T}(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_{i}-b]} \Psi_{0}[(j-1)\eta]$$

$$+$$
N-S

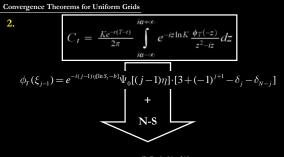

$$C_0[\ln K]_u^- \approx \frac{e^{-\alpha[\ln S_t - b + \lambda(u-1)]}}{b} \cdot \Re(\omega(u))$$

EUROPE

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Non Uniform Discretization Grid



Nyquist – Shannon Limit (N-S)

$$\mathcal{F}[f(x)](t_n) = \lim_{N \to \infty} \frac{X}{N} \omega(n)$$

$$\{t_n\}_{n=1..\frac{N}{2}} \quad for N \text{ even}$$

$$\{t_n\}_{n=1..\frac{N+1}{2}} \quad for N \text{ odd}$$

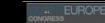
$$C_0[\ln K]_u^- \approx \frac{e^{-\alpha[\ln S_t - b + \lambda(u-1)]}}{3b} \cdot \Re(\omega(u))$$

CONSOB EUROPE

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

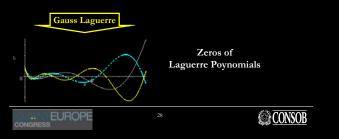


Optimal choice of discretization points

Gauss Laguerre

Gander Gautschi

Condition 2



Optimal choice of discretization points

N≠M

General DFT

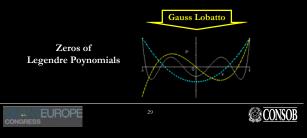
 $\omega(m) = \sum_{k=1}^{m-1} e^{-i\frac{\pi}{X}x_{j}(m-1)} f(x_{j}) \text{ where } m = 1, 2, \dots, 2M$

Convergence Theorems for Non Uniform Gaussian Grids

Convergence Theorems for Non Uniform Gaussian Grids

 $\phi_T(\xi_{j-1}) = e^{\left[1 + i \left(\frac{M\pi}{a} - \ln S_t\right)\right]\xi_{j-1}} \Psi_0[\xi_{j-1}] \cdot \frac{1}{I}$

EUROPE

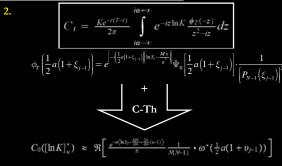

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Optimal choice of discretization points

Convergence Theorems for Non Uniform Gaussian Grids

The Convergence Theorem for General DFT's (C Th)


$$\mathcal{F}[f(x)](t_m) = \lim_{N \to \infty} \sum_{j=1}^{N} e^{-j\frac{2\pi}{X}x_j(m-1)} f(x_j, X)$$
$$t_m = \frac{2\pi}{X} (m-1)$$

1.

Condition 2

Convergence Theorems for Non Uniform Gaussian Grids

Gaussian Grids Optimal choice of discretization points under Gautschi Zeros of rescaled Legendre Poynomials **CONSOB** EUROPE Convergence Theorems for Non Uniform Gaussian Grids $C_{I} = \frac{Ke^{-r(T-t)}}{2}$ $e^{-iz\ln K} \frac{\phi_T(-z)}{2} dz$ iα−∞ Gaussian Grids for ϕ_T $1. \quad \phi_{\tau}(\xi_{j-1}) = e^{\left[1 + i\left(\frac{M\pi}{a} - \ln \xi_{j}\right)\right]\xi_{j-1}} \Psi_{0}[\xi_{j-1}] \cdot \frac{1}{L_{N+1}(\xi_{j-1})L'_{N}(\xi_{j-1})}$ $2. \ \phi_r\left(\frac{1}{2}a(1+\xi_{j-1})\right) = e^{\left[-i\left(\frac{1}{2}a(1+\xi_{j-1})\right)\left(\ln S_i - \frac{M\pi}{a}\right)\right]}\Psi_0\left[\frac{1}{2}a(1+\xi_{j-1})\right] \cdot \frac{1}{\left[P_{N-1}(\xi_{j-1})\right]^2}$

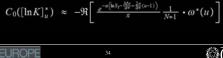
Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Syllabus of the presentation

Review of Derivative Pricing via DFT

- •The Lewis Standard Machine
- DFT Convergence to FT
- · Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids


• Fast Derivative Pricing

- Fractional FFT
- Non Uniform FFT •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions

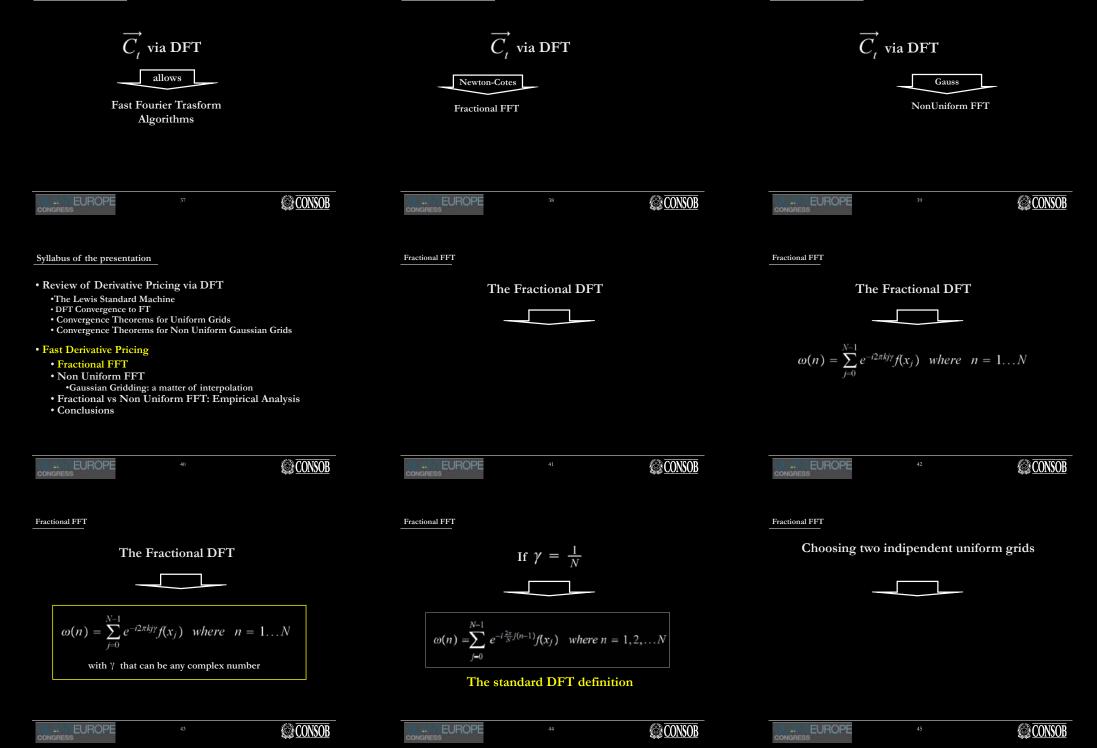
CONSOB

 $e^{-iz \ln K} \frac{\phi_T(-z)}{z^2 - iz}$

C-Th

 $_{L+1}(\xi_{i-1})L'_{N}(\xi_{i-1})$

EUROPE


CONSOB

Fast Option Pricing

Fast Option Pricing

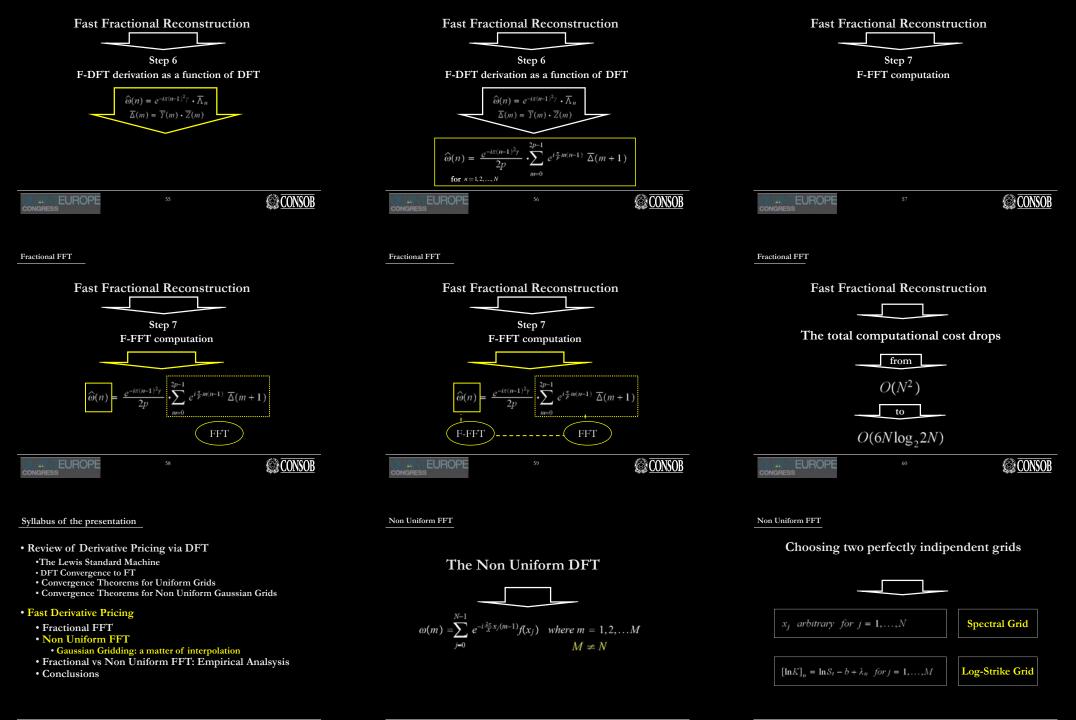
EUROPE

Fractional FFT Fractional FFT Choosing two indipendent uniform grids Choosing two indipendent uniform grids Choosing two indipendent uniform grids Implies choosing a specific value of γ $x_j = jg\left(\frac{a}{N}\right)$ for j = 1...NSpectral Grid Log-Strike Grid $[\ln K]_{u}^{*} = \ln S_{t} - b + \lambda_{u} \quad for \ u = 1, \dots, N$ CONSOB CONSOB CONSOB EUROPE EUROPE EUROPE Fractional FFT Fractional FFT Fractional FFT Choosing two indipendent uniform grids **Fast Fractional Reconstruction Fast Fractional Reconstruction** Step 1 Step 2 Bailey-Swarztrauber F-DFT Characterization 2p-extension of DFT's coefficients Implies choosing a specific value of γ $\left\{\left(f\left((j-1)g\left(\frac{a}{N}\right)\right)e^{-i\pi j^{2}\gamma}\right)_{j=0}^{N-1},(0)_{j=0}^{N-1}\right\}$ $\sum y_{jZ_{n-j-1}}$ where $n = 1, 2, \dots N$ $\widehat{\omega}(n) = e^{-i\pi(n-1)^2}$ $\lambda g\left(\frac{a}{N}\right)$ $z = \left\{ \left(e^{i\pi j^2 \gamma}
ight)_{j=0}^{N-1}, \left(e^{i\pi (N-j)^2 \gamma}
ight)_{j=0}^{N-1}
ight\}$ $y_j = f(x_j)e^{-i\pi j^2}$ $z_j = e^{i\pi j^2}$ CONSOB CONSOB CONSOB EUROPE EUROPE Fractional FFT Fractional FFT Fractional FFT **Fast Fractional Reconstruction Fast Fractional Reconstruction Fast Fractional Reconstruction** Step 4 Step 3 Step 5 **Circular Convolution Theorem Bailey's Lemma** 2p points DFT's computation $\widehat{\omega}(n) = e^{-i\pi(n-1)^2\gamma} \cdot \overline{\Lambda}_n$ $\overline{Z}(m) = \sum e^{-\frac{1}{2}}$ $\frac{i\frac{2\pi}{q}}{2}(m-1)\overline{z}(x_j)$ where $m = 0, 1, \dots 2p-1$ $\overline{\Delta}(m) = \overline{Y}(m) \cdot \overline{Z}(m)$ $\overline{\Lambda}_n = \sum \overline{y}_i [\overline{z}_{n-j-1}]_{2i}$ $\overline{Y}(m) = \sum_{i=1}^{n} e^{-i\frac{2\pi}{2p}i(m-1)}\overline{y}(x_i)$ where $m = 0, 1, \dots 2p-1$ $0 \le n \le N-1$ FFT

CONSOB

EUROPE

CONSOB


CONSOB CONSOB

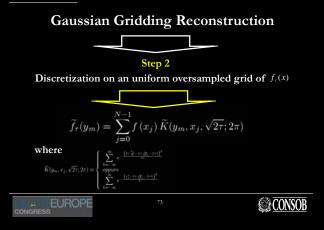
EUROPE

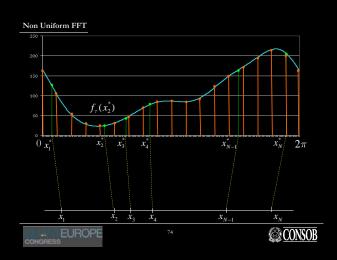
Fractional FFT

Fractional FFT

Fractional FFT

EUROPE




Non Uniform FFT

Non Uniform FFT

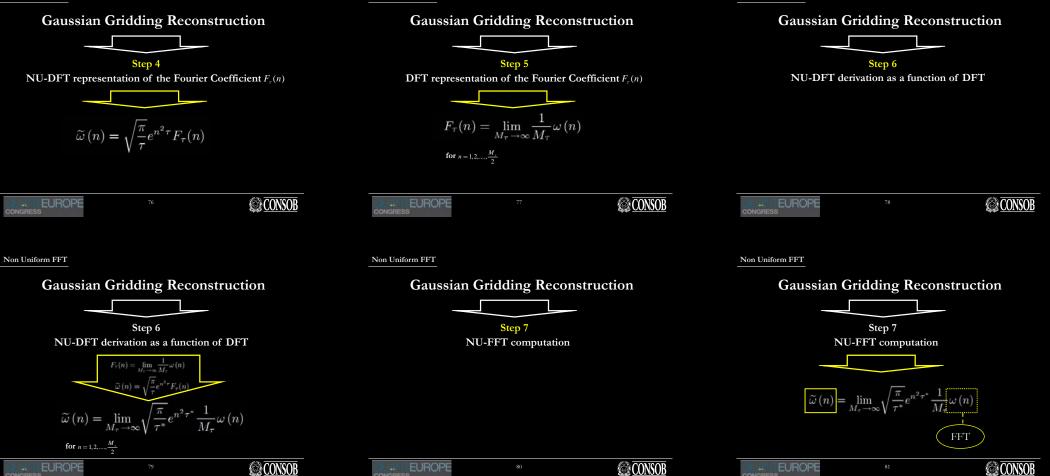
Non Uniform FFT

Non Uniform FFT

Non Uniform FFT

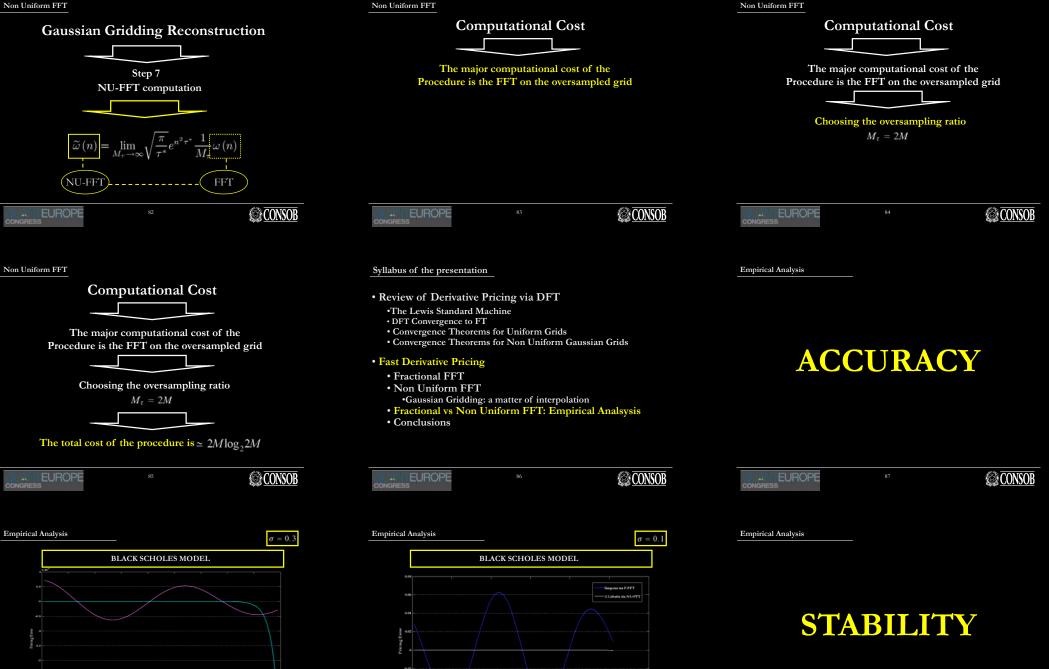
Non Uniform FFT

Gaussian Gridding Reconstruction


Step 3

Computation of the Fourier Coefficient of $f_{\tau}(x)$ discretised

 $F_{\tau}(n) = \lim_{M_{\tau} \to \infty} \frac{1}{M_{\tau}} \sum_{m=0}^{M_{\tau}-1} \widetilde{f}_{\tau}\left(m\frac{2\pi}{M_{\tau}}\right) e^{-im\frac{2\pi}{M_{\tau}}(n-1)}$


CONSOB

Non Uniform FFT

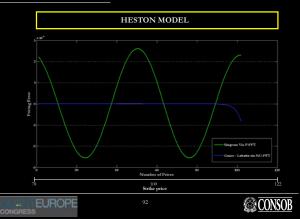
100 Strike price

CONSOB CONSOB

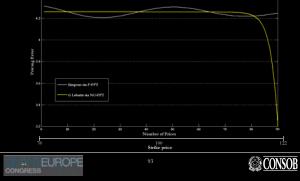
60 Number of Prices

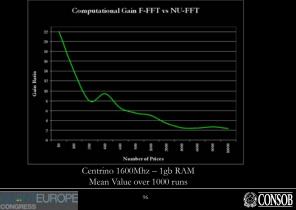
100 Strike price

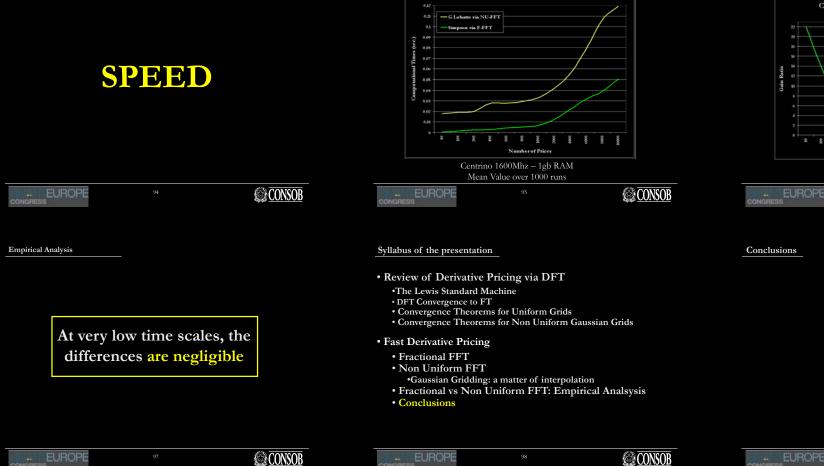
EUROPE



Empirical Analysis


Empirical Analysis


Empirical Analysis



Empirical Analysis MERTON MODEL

The Computational Framework

Empirical Analysis

Use of Gaussian Grids

F-FFT	NO
NU – FFT	YES

Conclusions

Conclusions

Indifference to Nyquist-Shannon Limit		Indipendent Price Grids					FFT's like - Accuracy					
	F-FFT YES			F-FFT	YES				F-FFT	YES		
	NU – FFT YES			NU – FFT	YES				NU – FFT	YES		
	100	CONSOB		101		CONSOB	CONSPE	EUROPE	102		()	CONSOB
VVINIE JJ			wonunasi				Sortona	ad 10				
Conclusions			Conclusions				Conclu	isions				
									F-FF		NU – FFT]
	Stability of Pricing			Speed of 1	Pricing		F	Gaussian Gr			NU – FF I	-
					0			NS Limit				-
	F-FFT NO			F-FFT	YES		 	Indipendent Gri				
	NU – FFT YES			NU – FFT	YES		Ē	Accuracy				
								Stability				
								Speed				
FIROPE	103	CONCOP	FIROPE	104		CONCOD		FUROPE	105		(A)	CONCOD
		CONSOB		104		CONSOB	CONGRE	EUROPE			\$	<u>CONSOB</u>