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DFT methods on Gaussian Grids 
for Fast Option Pricing

From Theory to Trading Desk
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European Call Price
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Absolute Mean Error computed w.r.t. on an space

FT Pricing Formulas

Accuracy
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Absolute Mean Error computed w.r.t. on an Extended space

FT Pricing Formulas

Stability
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DFT Convergence to FT

Given the General DFT
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Given the General DFT
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The Convergence Theorem (C Th)

DFT Convergence to FT
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Condition 1

Uniform Discretization Grid

Convergence Theorems for Uniform Grids
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Convergence Theorems for Uniform Grids

Condition 2

N=M
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DFT specialized
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Convergence Theorems for Uniform Grids

DFT Simplified Formula

Condition 1 Condition 2
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Convergence Theorems for Uniform Grids

Nyquist – Shannon Limit (N-S)
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Convergence Theorems for Uniform Grids

Uniform Discretization Grids for f

1.
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Convergence Theorems for Uniform Grids
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Convergence Theorems for Uniform Grids
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The Call Price computed via Convergence 
Theorem is equal to the Call Price computed 

via Trapezoid/Simpson Quadrature Rule 

Theorems of  
Equivalence

Convergence Theorems for Uniform Grids
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Non Uniform Discretization Grid
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Optimal choice of  discretization points

Gaussian Grids

Gauss Laguerre Gander Gautschi
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Optimal choice of  discretization points

Gaussian Grids

Gauss Lobatto

Zeros of
Legendre Poynomials
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Optimal choice of  discretization points

Gaussian Grids

Gander Gautschi

Zeros of  rescaled
Legendre Poynomials
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Condition 2

N≠M
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Convergence Theorems for Non Uniform Gaussian Grids

The Convergence Theorem (C Th)
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Convergence Theorems for Non Uniform Gaussian Grids
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The Call Price computed via Convergence 
Theorem is equal to the Call Price computed 

via Gauss Laguerre/Gander Gautschi 
Quadrature Rule 

Theorems of  
Equivalence

Convergence Theorems for Non Uniform Gaussian Grids
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allows

Fast Fourier Trasform 
Algorithms

Fast Option Pricing
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via DFT
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Newton-Cotes

Uniform FFT

Fast Option Pricing
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Gauss

NonUniform FFT

Fast Option Pricing
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Uniform FFT

Cooley-Tukey DFT Characterization

Iterated Bottom – Up for N stages

It gives the FFT Cooley – Tukey Algorithm
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Uniform FFT
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FFT Cooley – Tukey Algorithm

from

to

The DFT computational cost drops

Uniform FFT
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Since the Nyquist – Shannon Limit,
the pricing formulas

via FFT

Give accurate prices
ONLY

Around the Nyquist Frequency

Uniform FFT
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Since the Nyquist – Shannon Limit,
the pricing formulas

via FFT

Give accurate prices
ONLY

Around the Nyquist Frequency

Approx. 25% of  prices can be accepted

Uniform FFT
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Step 1

Gaussian Gridding

Gaussian Projection of  the non uniformly sampled
characteristic function on a oversampled uniform grid

Non Uniform FFT
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Non Uniform FFT
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Non Uniform FFT
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Step 2

Gaussian Gridding

FFT computation on the oversampled grid
of  the Fourier Coefficient of  the 

reprojected characteristic function

Non Uniform FFT
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Step 3

Gaussian Gridding

Elimination of  frequencies greater than
Nyquist – Shannon Limit

Non Uniform FFT
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Step 4

Gaussian Gridding

homothetic
rescaling from Gaussian scale

Non Uniform FFT
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The major computational cost of  the
Procedure is the FFT on the oversampled grid

Choosing the oversampling ratio

The total cost of  the procedure is

Computational Cost

Non Uniform FFT

2
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ACCURACY

The Computational Framework

G LA

G LO

2000 Prices computed

54

STABILITY

The Computational Framework

G LA

G LO

35 13580
Strike price
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STABILITY

The Computational Framework

The error of  90% of  prices 
computed lies in the

RANGE OF PRECISION
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SPEED

The Computational Framework

the NU – FFT is around
2 time slower than FFT

57

SPEED

The Computational Framework

At very low time scales, the
differences disappear

FFT
NC2 G – LA G - LO

0.01 sec. N/A N/A

NU – FFT
NC2 G - LA G - LO

0.02 sec. 0.0261 sec. 0.0301 sec.

Computation of  4000 prices on a Centrino 1600Mhz – 2gb RAM
Mean Value over 1000 runs
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• NU – FFT allows the use of  Gaussian Grids 

• NU – FFT is indifferent to Nyquist _Shannon Limit

• NU – FFT is at least as accurate as FFT

• NU – FFT is more stable than FFT

• NU – FFT speed performances are indistinguishable
from FFT’s ones

Conclusions
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NU – FFT
is a natural candidate for

operational use on trading desks

Conclusions


