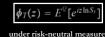
Latest Developments in Semianalytical **Derivatives Pricing**

A Lewis Formula's implementation of Fractional and Non Uniform Discrete Transforms

Marcello Minenna - Paolo Verzella

The Lewis Standard Machine



A linear direct mapping from Fourier Spectral Space

LEWIS REPRESENTATION

The Lewis Standard Machine

		$z = \zeta +$
Financial Claim	w(x)	$\widetilde{w}(x)$
Call Option	$\max \big[S_T - K, 0\big]$	$-\frac{K^{m+1}}{z^2-iz}, \alpha > 1$
Put Option	$\max \big[K \! - \! S_T, 0 \big]$	$-\frac{K^{m+1}}{z^2-iz}$, $\alpha < 0$
Covered Call	$\min[S_T, K]$	$\frac{K^{n+1}}{z^2 - iz}$, $0 < \alpha < 1$
Money Market	1	$2\pi\delta(k), \alpha\in\mathbb{R}$
Self Quanto Call	$\max \big[S_T - K, 0 \big] \cdot S_T$	$\frac{K^{2+2\alpha}}{\left(zi+1\right)^{\mathcal{S}_T}\left(zi+2\right)^{\mathcal{S}_T}}, \ \ \alpha<-2$
Power Call	$\max \left[S_T - K, 0 \right]^d$	$\frac{K^{\mathrm{d(l+d)}}\Gamma(z)\Gamma(d+1)}{\Gamma(z+d+1)}, \alpha\!<\!-d$

Syllabus of the presentation

Review of Derivative Pricing via DFT

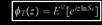
- The Lewis Standard Machine
- · DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids

• Fast Derivative Pricing

- Fractional FFT
- Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions

The Lewis Standard Machine

is the PayOff functional's Transform



under risk-neutral measure

A linear direct mapping from Fourier Spectral Space

$$V_{t} = \frac{e^{-r(T-t)}}{2\pi} \int_{i\alpha-\infty}^{i\alpha+\infty} e^{-iz\ln K} \phi_{T}(-z) \int_{-\infty}^{+\infty} e^{-izx} w(x) dx dz$$

Syllabus of the presentation

• Review of Derivative Pricing via DFT

- The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

Syllabus of the presentation

• Review of Derivative Pricing via DFT

- The Lewis Standard Machine
 - · DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - · Convergence Theorems for Non Uniform Gaussian Grids

The Lewis Standard Machine

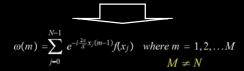
implies reducing the problem to the calculation of a single integral

DFT Convergence to FT

Given the General DFT

$$\omega(m) = \sum_{i=0}^{N-1} e^{-i\frac{2\pi}{N}X_j(m-1)} f(x_j) \text{ where } m = 1, 2, ...M$$

Given the General DFT



Syllabus of the presentation

DFT Convergence to FT

· Review of Derivative Pricing via DFT · The Lewis Standard Machine

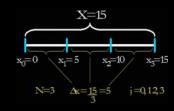
• Convergence Theorems for Uniform Grids

• Convergence Theorems for Non Uniform Gaussian Grids

Convergence Theorems for Uniform Grids

Condition 1

Uniform Discretization Grid



Nyquist – Shannon Limit (N-S)

 $\mathcal{F}[f(x)](t_n) = \lim_{N \to \infty} \frac{X}{N} \omega(n)$

 $\{t_n\}_{n=1..\frac{N}{2}}$ for N even

 $\{t_n\}_{n=1\dots\frac{N+1}{2}}$ for N odd

Risk

<u>CONSOB</u>

Convergence Theorems for Uniform Grids

Condition 1

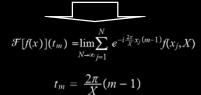
Convergence Theorems for Uniform Grids

Condition 2

DFT Simplified Formula

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi kj\gamma} f(x_j)$$
 where $n = 1...N$

The Convergence Theorem for General DFT's (C Th)



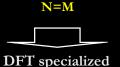
€ CONSOB

Convergence Theorems for Uniform Grids

Risk

Condition 2

CONSOB



 $C_{\text{o via FT}}$

 $\overrightarrow{C_0}$ via DFT

Convergence theorems

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(n-1)} f(x_j) \text{ where } n=1,2,...,N$$

CONSOB

Convergence Theorems for Uniform Grids

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{ia-\infty}^{ia+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

Uniform Discretization Grids for ϕ_T

1.
$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_t - b]} \Psi_0[(j-1)\eta]$$

2.
$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_i - b]} \Psi_0[(j-1)\eta] \cdot [3 + (-1)^{j+1} - \delta_j - \delta_{N-j}]$$

1.

$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_i - b]} \Psi_0[(j-1)\eta]$$

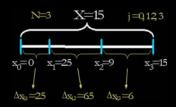
$$C_0[\ln K]_u^- \approx \frac{e^{-a[\ln S_t - b + \lambda(u-1)]}}{b} \cdot \Re(\omega(u))$$

19

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Non Uniform Discretization Grid



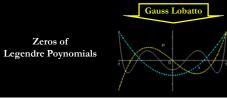
22

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

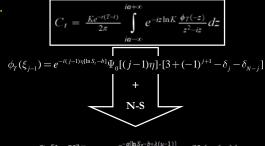
Gaussian Grids

Optimal choice of discretization points



Convergence Theorems for Uniform Grids

2.



<u> CONSOB</u>

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

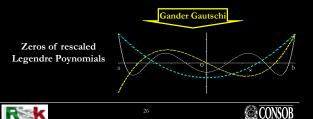
Optimal choice of discretization points

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points



Syllabus of the presentation

- Review of Derivative Pricing via DFT
- The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

Risk

<u>CONSOB</u>

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Optimal choice of discretization points

Zeros of Laguerre Poynomials

Risk

anguerre r oynom

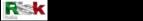
© CONSOB

Convergence Theorems for Non Uniform Gaussian Grids

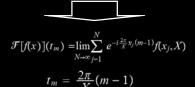
Condition 2

General DFT

$$\omega(m) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j) \text{ where } m=1,2,...,2M$$



The Convergence Theorem for General DFT's (C Th)



Convergence Theorems for Non Uniform Gaussian Grids

2.

$$C_{I} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{ia-\infty}^{ia+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T} \left(\frac{1}{2}a(1+\xi_{j-1})\right) = e^{\left[-\frac{1}{2}a(1+\xi_{j-1})\right]\left(\ln S_{j} - \frac{M\pi}{a^{2}}\right)} \Psi_{0} \left[\frac{1}{2}a(1+\xi_{j-1})\right] \cdot \frac{1}{\left[P_{N-1}\left(\xi_{j-1}\right)\right]^{2}}$$

$$+ C-Th$$

$$C_{0}([\ln K]_{u}^{*}) \approx \Re\left[\frac{e^{-a(\ln S_{j} - \frac{M\pi}{a^{2}} + \frac{M\pi}{a^{2}} +$$

31

Fast Option Pricing

$$\overrightarrow{C}_t$$
 via DFT

Fractional FFT

Convergence Theorems for Non Uniform Gaussian Grids

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{ia-\infty}^{ia+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

Gaussian Grids for ϕ_T

1.
$$\phi_{T}(\xi_{j-1}) = e^{\left[1+i\left(\frac{M\pi}{a^{*}}-\ln S_{i}\right)\right]\xi_{j-1}}\Psi_{0}[\xi_{j-1}]\cdot\frac{1}{L_{N+1}(\xi_{j-1})L'_{N}(\xi_{j-1})}$$

$$2. \ \phi_{T}\bigg(\frac{1}{2}a\big(1+\xi_{j-1}\big)\bigg) = e^{\left[-i\left(\frac{1}{2}a(1+\xi_{j-1})\right)\left(\ln S_{i} - \frac{M\pi}{a}\right)\right]}\Psi_{0}\bigg[\frac{1}{2}a\big(1+\xi_{j-1}\big)\bigg] \cdot \frac{1}{\left[P_{N-1}\left(\xi_{j-1}\right)\right]^{2}}$$

Syllabus of the presentation

- Review of Derivative Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - · Convergence Theorems for Uniform Grids
 - · Convergence Theorems for Non Uniform Gaussian Grids
- Fast Derivative Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 Conclusions

2

Fast Option Pricing

Convergence Theorems for Non Uniform Gaussian Grids

1.

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{ia-\infty}^{ia+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T}(\xi_{j-1}) = e^{\left[1+i\left(\frac{M\pi}{a}-\ln \xi_{j}\right)\right]\xi_{j-1}} \Psi_{0}[\xi_{j-1}] \cdot \frac{1}{L_{N+1}(\xi_{j-1})L'_{N}(\xi_{j-1})}$$

$$+ C-Th$$

$$C_{0}([\ln K]_{u}^{*}) \approx -\Re\left[\frac{e^{-a(\ln \xi_{T}-\frac{M\pi}{a^{2}}+\frac{2\pi}{a^{2}}(u-1))}}{N-1} \cdot \omega^{*}(u)\right]$$

CONSOB

Fast Option Pricing

Fast Fourier Trasform Algorithms

Syllabus of the presentation

- Review of Derivative Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Derivative Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 - Conclusions

The Fractional DFT

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi k j \gamma} f(x_j) \quad where \quad n = 1...N$$

with γ that can be any complex number

Fractional FFT

Choosing two indipendent uniform grids

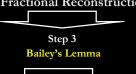
Implies choosing a specific value of γ

$$\gamma = \frac{\lambda g\left(\frac{a}{N}\right)}{2\pi}$$

€ CONSOB

Fractional FFT

Fast Fractional Reconstruction



$$\widehat{\omega}(n) = e^{-i\pi(n-1)^2 \gamma} \cdot \overline{\Lambda}_n$$

$$\overline{\Lambda}_n = \sum_{j=0}^{2p-1} \overline{y}_j [\overline{z}_{n-j-1}]_{2p}$$

$$0 \le n \le N-1$$

If $\gamma = \frac{1}{N}$

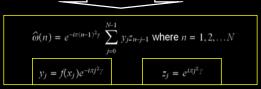
The standard DFT definition

Fractional FFT

Fast Fractional Reconstruction

Step 1

Bailey-Swarztrauber F-DFT Characterization

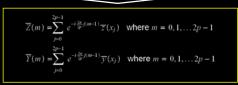


Fractional FFT

Fast Fractional Reconstruction

Step 4

2p points DFT's computation



<u>CONSOB</u>

Choosing two indipendent uniform grids

Spectral Grid

$$[\ln K]_{u}^{+} = \ln S_{t} - b + \lambda_{u} \quad for \ u = 1, \dots, N$$

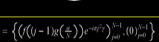
Log-Strike Grid

€ CONSOB

Fractional FFT

Fast Fractional Reconstruction

2p-extension of DFT's coefficients



$$y = \left\{ \left(f\left((j-1)g\left(\frac{a}{N}\right) \right) e^{-i\pi j^{2}\gamma} \right)_{j=0}^{N-1}, (0)_{j=0}^{N-1} \right\}$$

$$z = \left\{ \left(e^{i\pi j^{2}\gamma} \right)_{j=0}^{N-1}, \left(e^{i\pi (N-j)^{2}\gamma} \right)_{j=0}^{N-1} \right\}$$

Fractional FFT

Fast Fractional Reconstruction

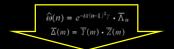
Step 5

Circular Convolution Theorem

$$\overline{\Delta}(m) = \overline{Y}(m) \cdot \overline{Z}(m)$$
FFT

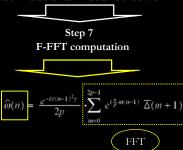
Step 6

F-DFT derivation as a function of DFT



Fractional FFT

Fast Fractional Reconstruction

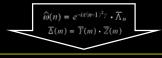


Syllabus of the presentation

- · Review of Derivative Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Derivative Pricing
 - Fractional FFT
 - Non Uniform FFT
 - Gaussian Gridding: a matter of interpolation Fractional vs Non Uniform FFT: Empirical Analsysis
 - Conclusions

Fast Fractional Reconstruction

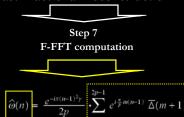
F-DFT derivation as a function of DFT



$$\widehat{\omega}(n) = \frac{e^{-i\pi(n-1)^2 \gamma}}{2p} \cdot \sum_{m=0}^{2p-1} e^{i\frac{\pi}{p}m(n-1)} \overline{\Delta}(m+1)$$
for $n=1,2,...,N$

Fractional FFT

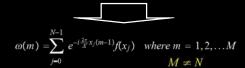
Fast Fractional Reconstruction



FFT

Non Uniform FFT

The Non Uniform DFT

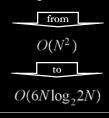


CONSOB

Fractional FFT

Fast Fractional Reconstruction

The total computational cost drops



Non Uniform FFT

Choosing two perfectly indipendent grids

 x_i arbitrary for j = 1,...,N

Spectral Grid

 $[\ln K]_{ii} = \ln S_t - b + \lambda_{ii}$ for j = 1,...,M

Choosing two perfectly indipendent grids

It's a natural property of the Non Uniform Approach

Gaussian Gridding Reconstruction

<u>CONSOB</u>

Gaussian Gridding Reconstruction

Gaussian Convolution of the non uniformly sampled characteristic function

$$f_{\tau}(x) = \sum_{j=0}^{N-1} f(x_j) \sum_{k=-\infty}^{\infty} e^{-\frac{(x_j-x-2k\pi)^2}{4\tau}}$$

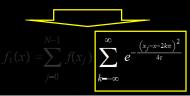
€ CONSOB

Non Uniform FFT

Risk

Gaussian Gridding Reconstruction

Gaussian Convolution of the non uniformly sampled characteristic function

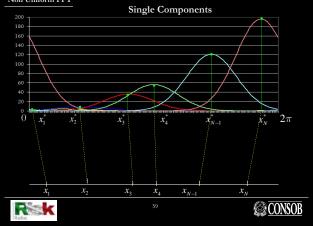


58

<u>CONSOB</u>

€ CONSOB

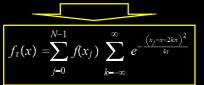
Non Uniform FFT



Non Uniform FFT

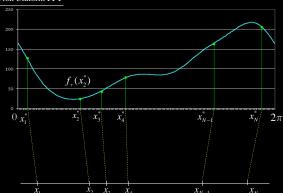
Gaussian Gridding Reconstruction

Gaussian Convolution of the non uniformly sampled characteristic function



Non Uniform FFT

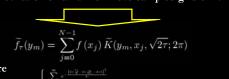
Non Uniform FFT



Non Uniform FFT

Gaussian Gridding Reconstruction

Discretization on an uniform oversampled grid of $f_{\tau}(x)$



 x_2 x_3

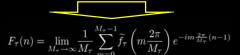
 x_{N-1}

Risk

Non Uniform FFT

Gaussian Gridding Reconstruction

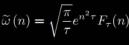
Computation of the Fourier Coefficient of $f_{\tau}(x)$ discretised



Gaussian Gridding Reconstruction

NU-DFT representation of the Fourier Coefficient $F_{\tau}(n)$

€ CONSOB

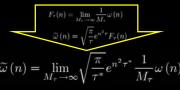


CONSOB

Non Uniform FFT

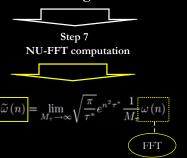
Gaussian Gridding Reconstruction

NU-DFT derivation as a function of DFT



Non Uniform FFT

Gaussian Gridding Reconstruction



Risk

Gaussian Gridding Reconstruction

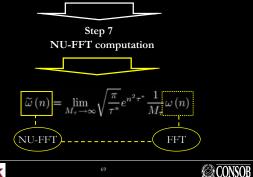
Gaussian Gridding Reconstruction

Step 5

 $F_{\tau}(n) = \lim_{M_{\tau} \to \infty} \frac{1}{M_{\tau}} \omega(n)$

for $n = 1, 2, ..., \frac{M_{\tau}}{2}$

DFT representation of the Fourier Coefficient $F_{\tau}(n)$

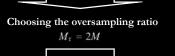


Empirical Analysis

Non Uniform FFT

Computational Cost

The major computational cost of the Procedure is the FFT on the oversampled grid



The total cost of the procedure is $\simeq 2M \log_2 2M$

Syllabus of the presentation

· Review of Derivative Pricing via DFT

- •The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

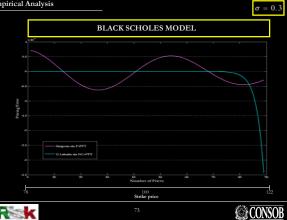
• Fast Derivative Pricing

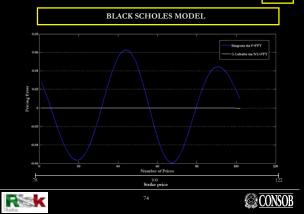
- Fractional FFT
- Non Uniform FFT
- •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analsysis
- Conclusions

Empirical Analysis

 $\sigma = 0.1$

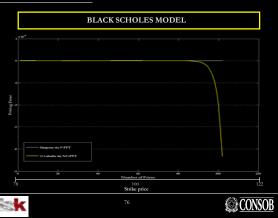
Empirical Analysis



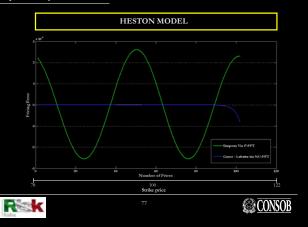


STABILITY

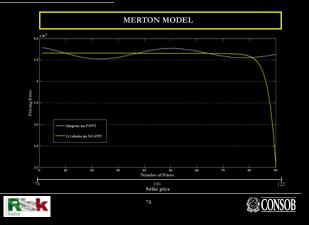
Empirical Analysis



Empirical Analysis

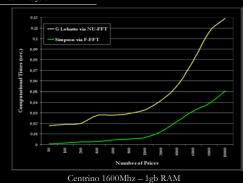


Empirical Analysis



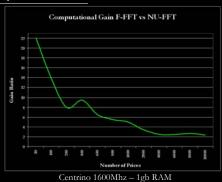
Empirical Analysis

Empirical Analysis



Mean Value over 1000 runs

The Computational Framework



Mean Value over 1000 runs

SPEED

Review of Derivative Pricing via DFT

- •The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids
- Fast Derivative Pricing
 - Fractional FFT
 - Non Uniform FFT
 •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analsysis
 - Conclusions

F-FFT	NO
NU – FFT	YES

82

At very low time scales, the

differences are negligible

Conclusions

Conclusions

Conclusions

Indifference to Nyquist-Shannon Limit

F-FFT	YES
NU – FFT	YES

Indipendent Price Grids

F-FFT	YES
NU – FFT	YES

FFT's like - Accuracy

F-FFT	YES
NU – FFT	YES

85

86

Conclusions

Stability of Pricing

F-FFT	NO
NU – FFT	YES

Conclusions

Speed of Pricing

F-FFT	YES
NU – FFT	YES

Conclusions

	F-FFT	NU – FFT
Gaussian Grids		
NS Limit		
Indipendent Grids		
Accuracy		
Stability		
Speed		

