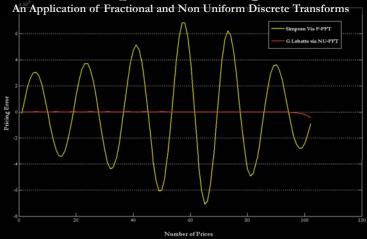
Advanced Solutions in Semianalytical Option Pricing



Marcello Minenna - Paolo Verzella

Syllabus of the presentation

- Review of Option Pricing via DFT
 - The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids

Syllabus of the presentation

- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 - Conclusions

4

The Lewis Standard Machine

$$\widetilde{w}(z) = \int_{-\infty}^{+\infty} e^{-izx} w(x) dx$$

is the PayOff functional's Transform

Derivative Price V_t

The Lewis Standard Machine



$$\phi_T(z) = E^{\mathcal{Q}}[e^{iz\ln S_t}]$$

is the PayOff functional's Transform

under risk-neutral measure

Derivative Price V_t

The Lewis Standard Machine

$$\widetilde{w}(z) = \int_{-\infty}^{+\infty} e^{-izx} w(x) dx$$

$$\phi_T(z) = E^{\mathcal{Q}}[e^{iz\ln S_t}]$$

is the PayOff functional's Transform

under risk-neutral measure

A linear direct mapping from Fourier Spectral Space

$$V_{t} = \frac{e^{-r(T-t)}}{2\pi} \int_{i\alpha-\infty}^{i\alpha+\infty} e^{-iz\ln K} \phi_{T}(-z) \int_{-\infty}^{+\infty} e^{-izx} w(x) dx dz$$

The Lewis Standard Machine

$$\widetilde{w}(z) = \int_{-\infty}^{+\infty} e^{-izx} w(x) dx$$

$$\phi_T(z) = E^{\mathcal{Q}}[e^{iz\ln S_t}]$$

is the PayOff functional's Transform

under risk-neutral measure

A linear direct mapping from Fourier Spectral Space

LEWIS REPRESENTATION

The Lewis Standard Machine

Knowing $\widetilde{w}(z)$

implies reducing the problem to the calculation of a single integral

The Lewis Standard Machine

$$z = \xi + i\alpha$$

Financial Claim	w(x)	$\widetilde{w}(x)$
Call Option	$\max\bigl[S_T-K,0\bigr]$	$-rac{K^{if z+1}}{m z^2-im z},\;\;lpha>1$
Put Option	$\max \left[K \! - \! S_T, 0 \right]$	$-rac{K^{iz+1}}{z^2-iz}, \;\; lpha < 0$
Covered Call	$\min[S_T, K]$	$rac{K^{zz+1}}{z^2-iz}, \ \ 0$
Money Market	1	$2\pi\delta(k), lpha\in\mathbb{R}$
Self Quanto Call	$\max \big[S_T - K, 0\big] \cdot S_T$	$\frac{K^{2+2iz}}{\left(zi+1\right)^{S_r}\left(zi+2\right)^{S_r}}, \ \alpha < -2$
Power Call	$\max[S_T - K, 0]^d$	$\frac{K^{d(1+iz)}\Gamma(iz)\Gamma(d+1)}{\Gamma(iz+d+1)},\alpha\!<\!-d$

Syllabus of the presentation

- Review of Option Pricing via DFT
 - The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids

Given the General DFT

$$\omega(m) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j)$$
 where $m = 1, 2, ...M$

Given the General DFT

$$\omega(m) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j) \quad \text{where } m = 1, 2, \dots M$$

$$M \neq N$$

13

products EUROPI © CONSOB

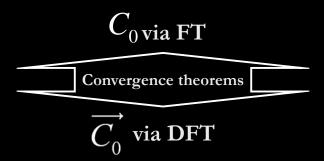
DFT Convergence to FT

The Convergence Theorem for General DFT's (C Th)

$$\mathcal{F}[f(x)](t_m) = \lim_{N \to \infty} \sum_{j=1}^{N} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j, X)$$

$$t_m = \frac{2\pi}{X}(m-1)$$

DFT Convergence to FT



• Review of Option Pricing via DFT

- The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

1/

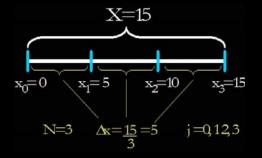
Convergence Theorems for Uniform Grids

Condition 2

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(n-1)} f(x_j)$$
 where $n=1,2,...,N$

Condition 1

Uniform Discretization Grid



18

Convergence Theorems for Uniform Grids

Condition 1

Condition 2

DFT Simplified Formula

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi kj\gamma} f(x_j) \quad where \quad n = 1...N$$

Nyquist – Shannon Limit (N-S)

$$\mathcal{F}[f(x)](t_n) = \lim_{N \to \infty} \frac{X}{N} \omega(n)$$

$$\{t_n\}_{n=1..\frac{N}{2}}$$
 for N even

$$\{t_n\}_{n=1..\frac{N+1}{2}}$$
 for N odd

21

Convergence Theorems for Uniform Grids

1.

products

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{i\alpha-\infty}^{i\alpha+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T}(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_{t}-b]} \Psi_{0}[(j-1)\eta]$$
+
N-S

$$C_0[\ln K]_u^- \approx \frac{e^{-\alpha[\ln S_t - b + \lambda(u-1)]}}{b} \cdot \Re(\omega(u))$$

Convergence Theorems for Uniform Grids

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{i\alpha-\infty}^{i\alpha+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

Uniform Discretization Grids for ϕ_T

1.
$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_t - b]} \Psi_0[(j-1)\eta]$$

2.
$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_t - b]} \Psi_0[(j-1)\eta] \cdot [3 + (-1)^{j+1} - \delta_j - \delta_{N-j}]$$

products EUROPE

2

Convergence Theorems for Uniform Grids

2.

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{i\alpha-\infty}^{i\alpha+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T}(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_{t}-b]} \Psi_{0}[(j-1)\eta] \cdot [3+(-1)^{j+1} - \delta_{j} - \delta_{N-j}]$$

$$+ \bigvee_{N-S}$$

$$C_{0}[\ln K]_{u}^{-} \approx \frac{e^{-a[\ln S_{t}-b+\lambda(u-1)]}}{3b} \cdot \Re(\omega(u))$$

- Review of Option Pricing via DFT
 - The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids

25

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points

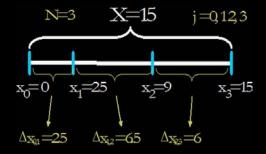
Gauss Laguerre

Gander Gautschi

#8 ----

Condition 1

Non Uniform Discretization Grid



products EUROPE

20

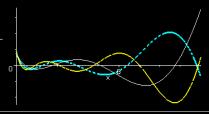
Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points

Gauss Laguerre

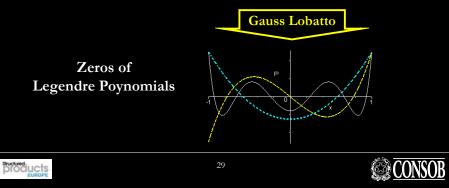


Zeros of Laguerre Poynomials

Condition 1

Gaussian Grids

Optimal choice of discretization points



Convergence Theorems for Non Uniform Gaussian Grids

Condition 2

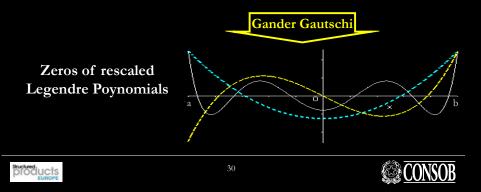
General DFT

$$\omega(m) = \sum_{i=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j) \text{ where } m=1,2,...,2M$$

Condition 1

Gaussian Grids

Optimal choice of discretization points

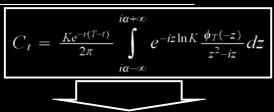


Convergence Theorems for Non Uniform Gaussian Grids

The Convergence Theorem for General DFT's (C Th)

$$\mathcal{F}[f(x)](t_m) = \lim_{N \to \infty} \sum_{j=1}^{N} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j, X)$$
$$t_m = \frac{2\pi}{X} (m-1)$$

Convergence Theorems for Non Uniform Gaussian Grids



Gaussian Grids for ϕ_T

1.
$$\phi_{T}(\xi_{j-1}) = e^{\left[1+i\left(\frac{M\pi}{a^{*}}-\ln S_{t}\right)\right]\xi_{j-1}}\Psi_{0}[\xi_{j-1}] \cdot \frac{1}{L_{N+1}(\xi_{j-1})L'_{N}(\xi_{j-1})}$$

$$2. \ \phi_T \left(\frac{1}{2} a \left(1 + \xi_{j-1} \right) \right) = e^{\left[-i \left(\frac{1}{2} a \left(1 + \xi_{j-1} \right) \right) \left(\ln S_j - \frac{M\pi}{a} \right) \right]} \Psi_0 \left[\frac{1}{2} a \left(1 + \xi_{j-1} \right) \right] \cdot \frac{1}{\left[P_{N-1} \left(\xi_{j-1} \right) \right]^2}$$

products EUROPE

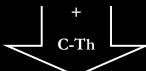
33

Convergence Theorems for Non Uniform Gaussian Grids

2.

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{i\alpha-\infty}^{i\alpha+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T}\left(\frac{1}{2}a\left(1+\xi_{j-1}\right)\right) = e^{\left[-i\left(\frac{1}{2}a(1+\xi_{j-1})\right)\left(\ln S_{i} - \frac{M\pi}{a^{*}}\right)\right]}\Psi_{0}\left[\frac{1}{2}a\left(1+\xi_{j-1}\right)\right] \cdot \frac{1}{\left[P_{N-1}\left(\xi_{j-1}\right)\right]^{2}}$$



$$C_0([\ln K]_u^*) \approx \Re\left[\frac{e^{-a(\ln S_i - \frac{M\pi}{a*} + \frac{2\pi}{a*}(u-1))}}{\pi} \frac{1}{N(N-1)} \cdot \omega^*(\frac{1}{2}a(1+v_{j-1}))\right]$$

Convergence Theorems for Non Uniform Gaussian Grids

1.

$$C_{t} = \frac{Ke^{-r(T-t)}}{2\pi} \int_{i\alpha-\infty}^{i\alpha+\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T}(\xi_{j-1}) = e^{\left[1+i\left(\frac{M\pi}{a^{*}} - \ln S_{i}\right)\right]\xi_{j-1}} \Psi_{0}[\xi_{j-1}] \cdot \frac{1}{L_{N+1}(\xi_{j-1})L'_{N}(\xi_{j-1})} + C-\text{Th}$$

$$C_0([\ln K]_u^*) \approx -\Re\left[\frac{e^{-a\left(\ln S_t - \frac{M\pi}{a^*} + \frac{2\pi}{a^*}(u-1)\right)}}{\pi} \frac{1}{N+1} \cdot \omega^*(u)\right]$$

34

Syllabus of the presentation

- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 - Conclusions

Fast Fourier Trasform Algorithms

37

20

 \overrightarrow{C}_{t} via DFT

Fast Option Pricing

\overrightarrow{C}_{t} via DFT

NonUniform FFT

• Review of Option Pricing via DFT

Newton-Cotes

Fractional FFT

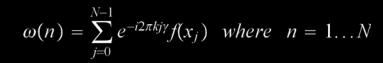
- •The Lewis Standard Machine
- DFT Convergence to FT

Syllabus of the presentation

- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 - Conclusions

Fractional FFT

Bayley-Swarztrauber F-DFT Characterization



Bayley-Swarztrauber F-DFT Characterization

Fractional FFT

Bayley-Swarztrauber F-DFT Characterization

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi kj\gamma} f(x_j)$$
 where $n = 1...N$

with \(\gamma \) that can be any complex number

Fractional FFT

If
$$\gamma = \frac{1}{N}$$

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i\frac{2\pi}{N}j(n-1)} f(x_j)$$
 where $n = 1, 2, ...N$

The standard DFT definition

Fractional FFT

Choosing two indipendent uniform grids

Choosing two indipendent uniform grids

$$x_j = jg\left(\frac{a}{N}\right)$$
 for $j = 1...N$

Spectral Grid

$$[\ln K]_u^* = \ln S_t - b + \lambda_u \quad \text{for } u = 1, \dots, N$$

Log-Strike Grid

Fractional FFT

Choosing two indipendent uniform grids

Fractional FFT

Choosing two indipendent uniform grids

Implies choosing a specific value of γ

Choosing two indipendent uniform grids

Implies choosing a specific value of γ

$$\gamma = \frac{\lambda g\left(\frac{a}{N}\right)}{2\pi}$$

49

Fast Fractional Reconstruction

Structured, products EUROPE

50

Fractional FFT

Fast Fractional Reconstruction

Fractional FFT

Fast Fractional Reconstruction

Calculate sequences of 2N points

Fractional FFT

Fast Fractional Reconstruction

Step 1

$$y = \left\{ \left(f\left((j-1)g\left(\frac{a}{N}\right) \right) e^{-i\pi j^2 \gamma} \right)_{j=0}^{N-1}, (0)_{j=0}^{N-1} \right\}$$

$$z = \left\{ \left(e^{i\pi j^2 \gamma} \right)_{j=0}^{N-1}, \left(e^{i\pi (N-j)^2 \gamma} \right)_{j=0}^{N-1} \right\}$$

53

Fast Fractional Reconstruction

Step 2

Calculate

$$w = \psi_0 \left((j-1)g\left(\frac{a}{N}\right) \right) \odot \left(e^{i\pi(N-j)^2\gamma} \right)_{j=0}^{N-1}$$

Structured products EUROPE

54

Fractional FFT

Fast Fractional Reconstruction

Step 3

Calculate via standard FFT

$$\overline{w} = FFT(w), \overline{z} = FFT(z)$$

Fractional FFT

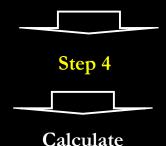
Fast Fractional Reconstruction

Step 4

Calculate

$$q = \overline{w} \odot \overline{z}$$

Fast Fractional Reconstruction



$$\omega(n) = IFFT(q) \oslash \left(e^{i\pi j^2 \gamma}\right)_{j=0}^{N-1}$$

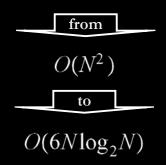
5/

Syllabus of the presentation

- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analsysis
 - Conclusions

Fast Fractional Reconstruction

The total computational cost drops



8

Non Uniform FFT

Gaussian Gridding

Gaussian Gridding

Non Uniform FFT

Gaussian Gridding

Step 1

Gaussian Convolution of the non uniformly sampled characteristic function

$$f_{\tau}(x) = \sum_{j=0}^{N-1} f(x_j) \sum_{k=-\infty}^{\infty} e^{-\frac{(x_j-x-2k\pi)^2}{4\tau}}$$

Gaussian Gridding

Step 1

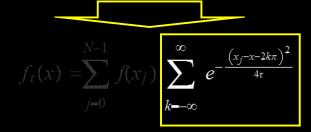
Gaussian Convolution of the non uniformly sampled characteristic function

Non Uniform FFT

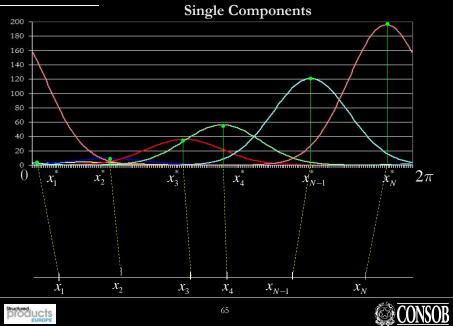
Gaussian Gridding

Step 1

Gaussian Convolution of the non uniformly sampled characteristic function

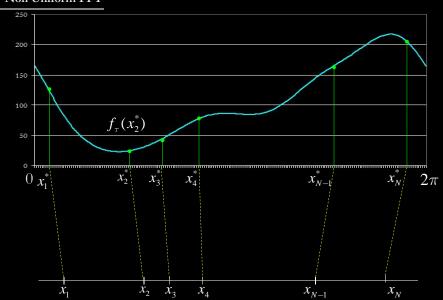


Non Uniform FFT



Non Uniform FFT

products



Non Uniform FFT

Gaussian Gridding

Step 1

Gaussian Convolution of the non uniformly sampled characteristic function

$$f_{\tau}(x) = \sum_{j=0}^{N-1} f(x_j) \sum_{k=-\infty}^{\infty} e^{-\frac{(x_j-x-2k\pi)^2}{4\tau}}$$

Non Uniform FFT

Gaussian Gridding

Step 2

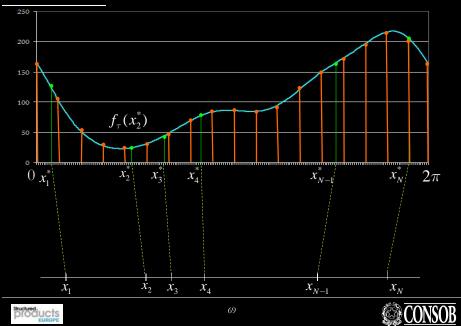
Discretization on an uniform oversampled grid of $f_{\tau}(x)$

$$\widetilde{f}_{\tau}(y_m) = \sum_{j=0}^{N-1} f(x_j) \, \widetilde{K}(y_m, x_j, \sqrt{2\tau}; 2\pi)$$

where

where
$$\widetilde{K}(y_{m}, x_{j}, \sqrt{2\tau}; 2\pi) = \begin{cases}
\sum_{k=-\infty}^{\infty} e^{-\frac{\left(2\pi \frac{S_{j}}{N} - 2\pi \frac{S_{j}^{2}}{N} - 2\pi k\right)^{2}}{4\tau}\right)}{4\tau} \\
\text{oppure} \\
\sum_{k=-\infty}^{\infty} e^{-\frac{\left(x_{j}^{2} - 2\pi \frac{S_{j}^{2}}{N} - 2\pi k\right)^{2}}{4\tau}\right)}
\end{cases}$$

Non Uniform FFT



Non Uniform FFT

Gaussian Gridding

NU-DFT representation of the Fourier Coefficient $F_{\tau}(n)$

$$\widetilde{\omega}(n) = \sqrt{\frac{\pi}{\tau}} e^{n^2 \tau} F_{\tau}(n)$$

Non Uniform FFT

Gaussian Gridding

Computation of the Fourier Coefficient of $f_{\pi}(x)$ discretised

$$F_{\tau}(n) = \lim_{M_{\tau} \to \infty} \frac{1}{M_{\tau}} \sum_{m=0}^{M_{\tau}-1} \widetilde{f}_{\tau} \left(m \frac{2\pi}{M_{\tau}} \right) e^{-im \frac{2\pi}{M_{\tau}}(n-1)}$$

products EUROPE 70

Non Uniform FFT

Gaussian Gridding

Step 5

DFT representation of the Fourier Coefficient $F_{\tau}(n)$

$$F_{ au}(n) = \lim_{M_{ au} \to \infty} \frac{1}{M_{ au}} \omega(n)$$

for
$$n = 1, 2, ..., \frac{M_{\tau}}{2}$$

Gaussian Gridding

Step 6

NU-DFT derivation as a function of DFT

Structured ucts EUROPE

13

Non Uniform FFT

Gaussian Gridding

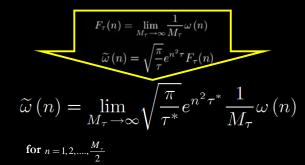
Step 7

NU-FFT computation

Gaussian Gridding

Step 6

NU-DFT derivation as a function of DFT



products EUROPE

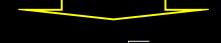
/4

Non Uniform FFT

Gaussian Gridding

Step 7

NU-FFT computation



$$\widetilde{\omega}(n) = \lim_{M_{\tau} \to \infty} \sqrt{\frac{\pi}{\tau^*}} e^{n^2 \tau^*} \frac{1}{M_{\tau}} \omega(n)$$
FFT

Gaussian Gridding

Step 7

NU-FFT computation

$$\widetilde{\omega}(n) = \lim_{M_{\tau} \to \infty} \sqrt{\frac{\pi}{\tau^*}} e^{n^2 \tau^*} \frac{1}{M_{\tau}} \omega(n)$$

$$NU\text{-FFT} - FFT$$

//

Non Uniform FFT

Computational Cost

The major computational cost of the Procedure is the FFT on the oversampled grid

Choosing the oversampling ratio

$$M_{\tau}=2M$$

Computational Cost

The major computational cost of the Procedure is the FFT on the oversampled grid

products EUROPE

78

Non Uniform FFT

Computational Cost

The major computational cost of the Procedure is the FFT on the oversampled grid

Choosing the oversampling ratio

$$M_{\tau}=2M$$

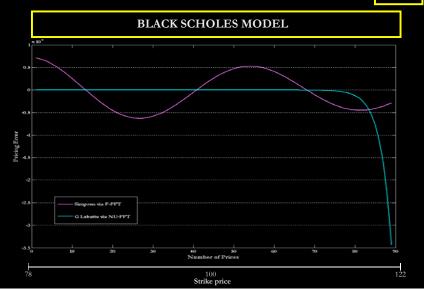
The total cost of the procedure is $\approx 2M \log 2M$

- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analsysis
 - Conclusions

8

Empirical Analysis

 $\sigma = 0.3$



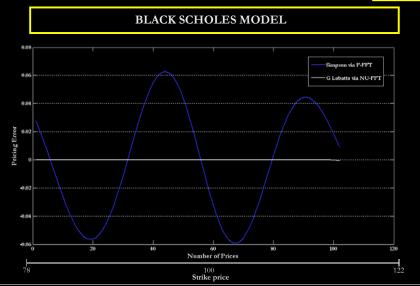
ACCURACY

products EUROPE

82

Empirical Analysis

 $\sigma = 0.1$

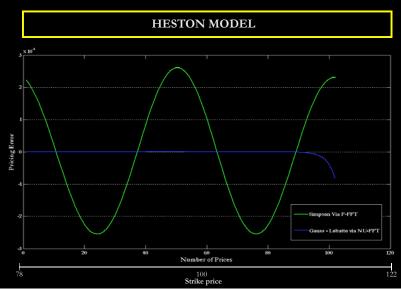


STABILITY

products

85

Empirical Analysis

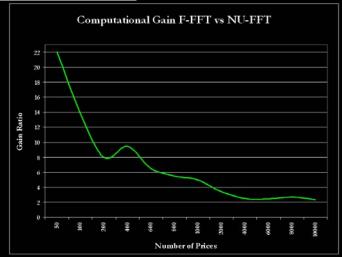


BLACK SCHOLES MODEL Sumpton via P-FPT G Laborite via NU-FPT 100 Strike price 122

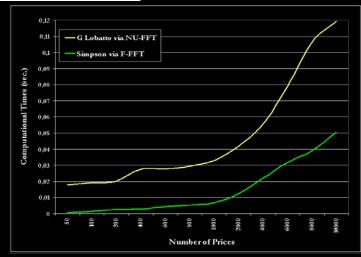
Empirical Analysis

SPEED

The Computational Framework



Centrino 1600Mhz – 1gb RAM Mean Value over 1000 runs



Centrino 1600Mhz – 1gb RAM Mean Value over 1000 runs

Empirical Analysis

At very low time scales, the differences are negligible

Syllabus of the presentation

Conclusions

- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 - Conclusions

94

Use of Gaussian Grids

NO

YES

F-FFT

NU-FFT

products EUROPE

93

Conclusions

Indifference to Nyquist-Shannon Limit

F-FFT	YES
NU – FFT	YES

Conclusions

Indipendent Price Grids

F-FFT	YES
NU – FFT	YES

FFT's like - Accuracy

F-FFT	YES
NU – FFT	YES

Stability of Pricing

F-FFT	NO
NU – FFT	YES

97

Structured UCTS EUROPE

98

Conclusions

Speed of Pricing

F-FFT	YES
NU – FFT	YES

Conclusions

	F-FFT	NU – FFT
Gaussian Grids		
NS Limit		
Indipendent Grids		
Accuracy		
Stability		
Speed		

