DFT Methods for Option Pricing Fast Extensions on Non Uniform Gaussian Grids Performance analysis and Error Control

Syllabus of the presentation

· Review of Option Pricing via DFT

- FT Pricing formula

- DFT Convergence to FT
 Convergence Theorems for Uniform Grids
 Convergence Theorems for Non Uniform Gaussian Grids
- Fast Option Pricing
- FFT
- · Non Uniform FFT
- •Gaussian Gridding: a matter of interpolation
 •The Computational Framework: Speed, Stability, Accuracy

Conclusions

<u>CONSOB</u>

© CONSOB

\boxtimes

© CONSOB

A linear direct mapping from Fourier Space

 $f_2(\ln S_T, \xi | \ln S_0) = \int e^{i(\ln S_T)} q_2(\ln S_T | \ln S_0) d \ln S_T$

under risk-neutral measure

$$C_0 = \frac{e^{-\alpha \ln K}}{\pi} \int_{0}^{+\infty} \Re \left[e^{i\xi \ln K} \frac{e^{-iT} f_2(\xi - (\alpha + 1)i)}{\alpha^2 + \alpha - \xi^2 + i(2\alpha + 1)\xi} \right] d\xi$$

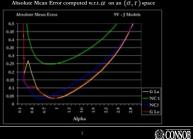
© CONSOB

FT Pricing Formulas

Accuracy

Absolute Mean Error computed w.r.t. α on an (σ, τ) space

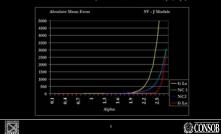
Marcello Minenna – Paolo Verzella STRUCTURED PRODUCTS EUROPE – Nov 13, 2007 - London



FT Pricing Formulas

ite Mean Error computed w.r.t. ϱ on an Extended (σ, τ) space

Stability



Syllabus of the presentation

Syllabus of the presentation

• Review of Option Pricing via DFT • FT Pricing formula
• DFT Convergence to FT
• Convergence Theorems for Uniform Grids

• Convergence Theorems for Non Uniform Gaussian Grids

• Review of Option Pricing via DFT

- FT Pricing formula
- DFT Convergence to FT
 Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids

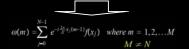
DFT Convergence to FT

FT Pricing Formulas

European Call Price C_i

Spot Price S,

Given the General DFT



 \boxtimes

<u>CONSOB</u>

<u>CONSOB</u>

DFT Convergence to FT

X

N

N

The Convergence Theorem for General DFT's (C Th)

DFT Convergence to FT

Syllabus of the presentation

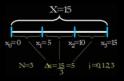
• Review of Option Pricing via DFT

- FT Pricing formula
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
 Convergence Theorems for Non Uniform Gaussian Grids

Convergence Theorems for Uniform Grids

Condition 1

Uniform Discretization Grid



<u>CONSOB</u>

Convergence Theorems for Uniform Grids

Condition 2

€ CONSOB

N=M

DFT specialized

 $\omega(n) = \sum_{j=0}^{N-1} e^{-j\frac{2\pi}{X}x_j(n-1)} f(x_j) \text{ where } n=1,2,...,N$

Convergence Theorems for Uniform Grids

Condition 1

 \boxtimes

DFT Simplified Formula

$$\omega(n) = \sum_{i=0}^{N-1} e^{-i\frac{2\pi}{N}f(n-1)} f(x_j)$$
 where $n = 1, 2, ...N$

Convergence Theorems for Uniform Grids

Nyquist - Shannon Limit (N-S)

$$\mathcal{F}[f(x)](t_n) = \lim_{N \to \infty} \frac{X}{N} \omega(n)$$

for N even

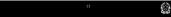
Convergence Theorems for Uniform Grids

 $C_0 = \frac{e^{-\alpha \ln K}}{\pi} \int\limits_0^{+\infty} \Re \left[e^{i\xi \ln K} \frac{e^{-rT} f_2(\xi - (\alpha + 1)i)}{\alpha^2 + \alpha - \xi^2 + i(2\alpha + 1)\xi} \right] d\xi$

Uniform Discretization Grids for f

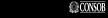
1. $f(v_{i-1}) = e^{-i(j-1)\eta[\ln S_i - b]} \psi_0((j-1)\eta)$

2. $f(v_{j-1}) = e^{-i(j-1)\eta[\ln S_{r}-b]}\psi_0((j-1)\eta) \cdot (3 + (-1)^j - \delta_{j-1})$



€ CONSOB

Condition 2



$$C_0[\ln K]_u^- \approx \frac{e^{-a[\ln S_r - b + \lambda(u-1)]}}{b} \cdot \Re(\omega(u))$$

$$C_0 = \frac{e^{-\alpha \ln K}}{\pi} \int_0^+ \Re \left[e^{i\ell \ln K} \frac{e^{-iT} f_2(\xi - (\alpha + 1)i)}{\alpha^2 + \alpha - \xi^2 + i(2\alpha + 1)\xi} \right] d\xi$$

$$f(v_{j-1}) = e^{-i(j-1)\eta[\ln S_{i-}b]} \psi_0((j-1)\eta) \cdot (3 + (-1)^j - \delta_{j-1}) + N-S$$

$$C_0[\ln K]_u^- \approx \frac{e^{-a[\ln S_r - b + \lambda(u-1)]}}{3b} \cdot \Re(\omega(u))$$

Theorems of

The Call Price computed via Convergence Theorem is equal to the Call Price computed via Trapezoid/Simpson Quadrature Rule

Syllabus of the presentation

· Review of Option Pricing via DFT

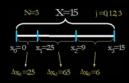
- FT Pricing formula
- DFT Convergence to FT
 Convergence Theorems for Uniform Grids

© CONSOB

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Non Uniform Discretization Grid



N

N

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

 \boxtimes

Optimal choice of discretization points

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Optimal choice of discretization points

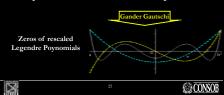


Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points



Convergence Theorems for Non Uniform Gaussian Grids

Condition 2

N≠M

General DFT

$$\omega(m) = \sum_{i=0}^{N-1} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j) \text{ where } m=1,2,...,2M$$

© CONSOB

Convergence Theorems for Non Uniform Gaussian Grids

The Convergence Theorem for General DFT's (C Th)

 \boxtimes

CONSOB

© CONSOB

© CONSOB

Gaussian Grids for f

1.
$$f(v_{j-1}) = e^{\left[1+i\left(\frac{Mc}{cr} - \ln S_i\right)\right]v_{j-1}}\psi_0(v_{j-1}) \frac{1}{L_{N+1}(v_{j-1})L'_N(v_{j-1})}$$

2.
$$f(\frac{1}{2}a(1+v_{j-1})) = \left[e^{-i(\frac{1}{2}a(1+v_{j-1}))\left[\ln S_j - \frac{Mr}{2}\right]}V_0(\frac{1}{2}a(1+v_{j-1}))\right]\frac{1}{[P_{N-1}(v_{j-1})]^2}$$

 \square

© CONSOB

1.
$$C_{0} = \frac{e^{-\alpha \ln K}}{\pi} \int_{0}^{+\infty} \Re \left[e^{i(\ln K)} \frac{e^{-\gamma T} f_{1}(\xi - (\alpha + 1)i)}{\alpha^{2} + \alpha - \xi^{2} + i(2\alpha + 1)\xi} \right] d\xi$$

$$f(u_{j-1}) = e^{\left[1 + i\left(\frac{i(y_{j}}{\alpha} - \ln S_{j})\right) |y_{j-1}|} \psi_{0}(u_{j-1}) \frac{1}{L_{N-1}(u_{j-1})L_{N}^{L}(u_{j-1})} + \frac{1}{C - Th} \right]$$

 $C_0([\ln K]_u^*) \approx -\Re \left[\frac{e^{-x(\ln S_T - \frac{M\pi}{2^2} + \frac{3\pi}{2^2}(u-1))}}{N+1} \cdot \omega^*(u) \right]$

$$C_{0} = \frac{e^{-ab\kappa} K}{\pi} \int_{0}^{+\infty} \Re \left[e^{i(\ln K)} \frac{e^{-i\theta} f_{1}(\xi - (\alpha + 1)i)}{\alpha^{2} + \alpha - \xi^{2} + i(2\alpha + 1)\xi} \right] d\xi$$

$$f\left(\frac{1}{2} \alpha(1 + v_{j-1})\right) = \left[e^{-i\left(\frac{1}{2} \alpha(1 + v_{j-1})\right)\left[\ln \pi_{j} - \frac{iv_{j}}{2}\right]} v_{0}\left(\frac{1}{2} \alpha(1 + v_{j-1})\right)\right] \frac{1}{[P_{N-1}(v_{j-1})]^{2}} + C_{O}([\ln K]_{w}^{*}) \approx \Re \left[\frac{e^{-i(\ln x_{j} - \frac{iv_{j}}{2} + \frac{iv_{j}}{2}(v_{j} - 1))}}{\frac{1}{N^{N-1}}} \cdot \omega^{*}(\frac{1}{2} \alpha(1 + v_{j-1}))\right]$$

Convergence Theorems for Non Uniform Gaussian Grids

Theorems of

The Call Price computed via Convergence Theorem is equal to the Call Price computed via Gauss Laguerre/Gander Gautschi Quadrature Rule

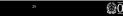
Syllabus of the presentation

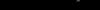
· Review of Option Pricing via DFT

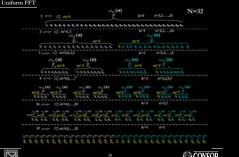
- FT Pricing formula
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
 Convergence Theorems for Non Uniform Gaussian Grids

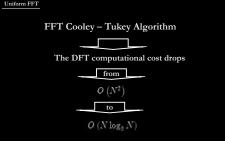
• Fast Option Pricing • Uniform FFT

- · Non Uniform FFT
- •Gaussian Gridding: a matter of interpolation
 •The Computational Framework: Speed, Stability, Accuracy
- Conclusions



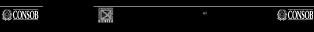






Non Uniform FFT

 \boxtimes



Syllabus of the presentation

N

• Review of Option Pricing via DFT

- FT Pricing formula
- DFT Convergence to FT
 Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids

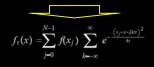
It gives the FFT Cooley - Tukey Algorithm

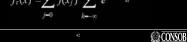
• Fast Option Pricing

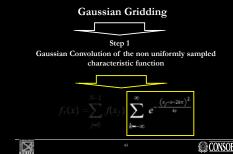
- Uniform FFT

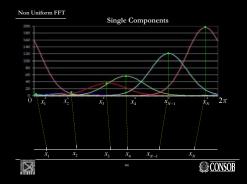
- Non Uniform FFT
 Gaussian Gridding: a matter of interpolation
 The Computational Framework: Speed, Stability, Accuracy
- Conclusions

Gaussian Convolution of the non uniformly sampled characteristic function









Non Uniform FFT

 \boxtimes

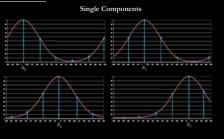
 $f_{-}(x_2^*)$

 x_N^* 2π

© CONSOB

Non Uniform FFT

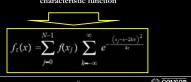
FFT computation on a uniform oversampled grid of the Fourier Coefficient of the convolved characteristic function



© CONSOB

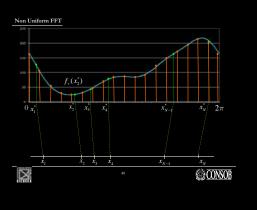
N

Gaussian Gridding



€ CONSOB

<u>CONSOB</u>



Computational Cost

The major computational cost of the

Procedure is the FFT on the oversampled grid

Choosing the oversampling ratio $M_\tau = 2M$

The total cost of the procedure is $\simeq 2M \log 2M$

STABILITY

Elimination of frequencies greater than Nyquist - Shannon Limit

© CONSOB

€ CONSOB

Non Uniform FFT

homothetic rescaling from Gaussian scale

ACCURACY

homothetic rescaling from Gaussian scale



N © CONSOB

Pricing Error - B5 Model via DFT

Syllabus of the presentation

• Review of Option Pricing via DFT

- FT Pricing formula
- DFT Convergence to FT
 Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids
- Uniform FFT

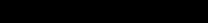
Non Uniform FFT
 Gaussian Gridding: a matter of interpolation
 The Computational Framework: Speed, Stability, Accuracy

Conclusions

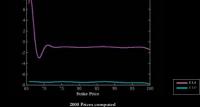
 \mathbf{X}

€ CONSOB

€ CONSOB



© CONSOB



© CONSOB

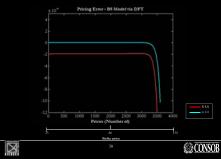
The Computational Framework

 \boxtimes

The Computational Framework

The Computational Framework

The Computational Framework



SPEED

At very low time scales, the

differences disappear

The Computational Framework

 \boxtimes

 \boxtimes

The Computational Framework

The Computational Framework

RANGE OF PRECISION

SPEED

At very low time scales, the

differences disappear

SPEED

Syllabus of the presentation

· Review of Option Pricing via DFT

- FT Pricing formula
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
 Convergence Theorems for Non Uniform Gaussian Grids

• Fast Option Pricing

- Uniform FFT
- Non Uniform FFT
- •Gaussian Gridding: a matter of interpolation
 •The Computational Framework: Speed, Stability, Accuracy

N

Non Uniform FFT

N

The Computational Framework

the NU - FFT is around

2 time slower than FFT

© CONSOB

Computation of 4000 prices on a Centrino 1600Mhz - 2gb RAM

0.02 sec. 0.0261 sec. 0.0301 sec.

Conclusions Conclusions

- NU FFT allows the use of Gaussian Grids
- NU FFT is indifferent to Nyquist _Shannon Limit
- NU FFT is at least as accurate as FFT
- NU FFT is more stable than FFT
- NU FFT speed performances are indistinguishable from FFT's ones

NU - FFT

is a natural candidate for operational use on trading desks

	CONS
--	------