Advanced Solutions in Semianalytical

Option Pricing

The Lewis Standard Machine

Derivative Price V_t

- Review of Option Pricing via DFT
 - •The Lewis Standard Machine
 - DFT Convergence to FT
 - Convergence Theorems for Uniform Grids
 - · Convergence Theorems for Non Uniform Gaussian Grids

Fast Option Pricing

- Fractional FFT • Non Uniform FFT
- •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions

Syllabus of the presentation

• Review of Option Pricing via DFT

- The Lewis Standard Machine
- DFT Convergence to FT
- · Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids

The Lewis Standard Machine

structured, products

 $\widetilde{w}(z) = \int e^{-izx} w(x) dx$ is the PayOff functional's Transform

 $\phi_T(z) = E^{\mathcal{Q}} [e^{iz \ln S_t}]$ under risk-neutral measure

A linear direct mapping from Fourier Spectral Space

The Lewis Standard Machine	The Lewis Standard Machine	Syllabus of the presentation
$z = \xi + i\alpha$	$z = \xi + i\alpha$	• Review of Option Pricing via DFT
	Financial Claim $w(x)$ $\widetilde{w}(x)$	The Lewis Standard Machine DFT Convergence to FT
	Call Option $\max[S_T - K, 0] = -\frac{K^{\alpha+1}}{z^2 - iz}, \ \alpha > 1$	Convergence Theorems for Uniform Grids Convergence Theorems for Nan Uniform Gaussian Grids
	Put Option $\max[K-S_T, 0] = -\frac{K^{m+1}}{z^2-iz}, \ \alpha < 0$	Contragence incorents for from Children Gaussian Childs
	Covered Call $\min[S_T, K] = \frac{K^{(0+1)}}{z^2 - iz}, 0 \le \alpha \le 1$	
	Money Market 1 $2\pi\delta(k), lpha\in\mathbb{R}$	
	Self Quanto Call $\max[S_T - K, 0] \cdot S_T = \frac{K^{2+2\alpha}}{(zi+1)^{2\gamma}(zi+2)^{2\gamma}}, \alpha < -2$	
	Power Call $\max \left[S_r - K, 0 \right]^d = \frac{K^{d(se)} \Gamma(\varepsilon) \Gamma(d+1)}{\Gamma(\varepsilon + d+1)}, \alpha < -d $	
DFT Convergence to FT	DFT Convergence to FT	DFT Convergence to FT
		The Convergence Theorem
Given the General DFT	Given the General DFT	for General DFT's (C Th)
N-1	N-1	$\mathcal{F}[f(y_{1})](t_{1}) = \lim_{n \to \infty} \sum_{n=1}^{N} e^{-i\frac{2\pi}{2}x_{1}(m-1)}f(y_{1}, Y_{2})$
$\omega(m) = \sum_{i=0}^{\infty} e^{-i\frac{2\pi}{\lambda}x_j(m-1)} f(x_j) \text{where } m = 1, 2, \dots M$	$\omega(m) = \sum_{i=0}^{\infty} e^{-\frac{i\pi}{N}x_j(m-1)} f(x_j) \text{where } m = 1, 2, \dots M$	$\mathcal{J}[f(\mathbf{x})](t_m) = \lim_{N \to \infty} \sum_{j=1}^{\infty} e^{-x_j \cdot \mathbf{x} - \mathbf{y}_j} f(x_j, \mathbf{x})$
<i>j</i> = 0	$M \neq N$	$t = \frac{2\pi}{m}(m-1)$
		$T_m = \frac{1}{X}(m-1)$
Structured Line CONSOB		structured ucts
DFT Convergence to FT	Syllabus of the presentation	Convergence Theorems for Uniform Grids
	Review of Option Pricing via DFT	Condition 1
C	The Lewis Standard Machine DET Convergence to ET	Uniform Discretization Grid
$C_0 via FT$	Convergence Theorems for Uniform Gaussian Grids Convergence Theorems for Non Uniform Gaussian Grids	
Convergence theorems	· Convergence incorents for twoir enhancing Gaussian Onus	X=15
$\overrightarrow{C_0}$ via DFT		$x_0 = 0$ $x_1 = 5$ $x_2 = 10$ $x_3 = 15$
0		
		N=3 $\Delta x = \frac{15}{3} = 5$ $1 = 0, 12, 3$

16

Convergence Theorems for Uniform Grids

Convergence Theorems for Uniform Grids

Condition 1

Convergence Theorems for Uniform Grids

structured products

1.

CONSOB

CONSOB

CONSOB

Condition 2

$$C_{t} = \frac{Ke^{-i(T-t)}}{2\pi} \int_{ia-\infty} e^{-iz\ln K} \frac{\phi_{T}(-z)}{z^{2}-iz} dz$$

$$\phi_{T}(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_{t}-b]} \Psi_{0}[(j-1)\eta]$$
+
N-S

$$C_0[\ln K]_u^- \approx \frac{e^{-\alpha[\ln S_t - b + \lambda(u-1)]}}{b} \cdot \Re(\omega(u))$$

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Non Uniform Discretization Grid

Nyquist – Shannon Limit (N-S)

$$\mathcal{F}[f(x)](t_n) = \lim_{N \to \infty} \frac{X}{N} \omega(n)$$

$$\{t_n\}_{n=1..\frac{N}{2}} \quad for N even$$

$$\{t_n\}_{n=1..\frac{N+1}{2}} \quad for N odd$$

$$C_0[\ln K]_u^- \approx \frac{e^{-\alpha[\ln S_t - b + \lambda(u-1)]}}{3b} \cdot \Re(\omega(u))$$

CONSOB Structured UCTS

Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids

Optimal choice of discretization points

Gauss Laguerre

Gander Gautschi

Optimal choice of discretization points

N≠M

General DFT

 $\omega(m) = \sum_{i=1}^{N-1} e^{-i\frac{\pi}{X}x_{j}(m-1)} f(x_{j}) \text{ where } m = 1, 2, \dots, 2M$

Convergence Theorems for Non Uniform Gaussian Grids

Gaussian Grids Optimal choice of discretization points

Condition 1

Convergence Theorems for Non Uniform Gaussian Grids

Convergence Theorems for Non Uniform Gaussian Grids

The Convergence Theorem for General DFT's (C Th)

$$\mathcal{F}[f(x)](t_m) = \lim_{N \to \infty} \sum_{j=1}^{N} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j, X)$$
$$t_m = \frac{2\pi}{X} (m-1)$$

Structured, UCTS

Condition 2

Convergence Theorems for Non Uniform Gaussian Grids

Structured JCts

$$\mathcal{F}[f(x)](t_m) = \lim_{N \to \infty} \sum_{j=1}^{N} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j, X)$$
$$t_m = \frac{2\pi}{X} (m-1)$$

CONSOB

Condition 1 Gaussian Grids Optimal choice of discretization points ander Gautschi Zeros of rescaled Legendre Poynomials **CONSOB** Structured, DIOCUCTS Convergence Theorems for Non Uniform Gaussian Grids $C_t = \frac{Ke^{-r(T-t)}}{2}$ $e^{-iz\ln K} \frac{\phi_T(-z)}{dz} dz$ iα−∞

Convergence Theorems for Non Uniform Gaussian Grids

Syllabus of the presentation

Review of Option Pricing via DFT

- •The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- · Convergence Theorems for Non Uniform Gaussian Grids

Fast Option Pricing

structured DIODUCTS

- Fractional FFT
- Non Uniform FFT •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions

CONSOB CONSOB

Fast Option Pricing

Fast Option Pricing

Fractional FFT Fractional FFT Choosing two indipendent uniform grids Choosing two indipendent uniform grids Choosing two indipendent uniform grids Implies choosing a specific value of γ $x_j = jg\left(\frac{a}{N}\right)$ for j = 1...NSpectral Grid $[\ln K]_{u}^{*} = \ln S_{t} - b + \lambda_{u} \quad for \ u = 1,$ Log-Strike Grid CONSOB Structured DTOCLUCTS CONSOB Structured DTOCLUCTS CONSOB Structured UCTS Fractional FFT Fractional FFT Fractional FFT Choosing two indipendent uniform grids Fast Fractional Reconstruction **Fast Fractional Reconstruction** Step 1 Implies choosing a specific value of γ $\gamma = \frac{\lambda g\left(\frac{a}{N}\right)}{\lambda g\left(\frac{a}{N}\right)}$ CONSOB Structured DIOCUCTS CONSOB products CONSOB Structured, DIOCUCTS Fractional FFT Fractional FFT Fractional FFT **Fast Fractional Reconstruction Fast Fractional Reconstruction Fast Fractional Reconstruction** Step 1 Step 1 Step 2 $y = \left\{ \left(f\left((j-1)g\left(\frac{a}{N}\right)\right) e^{-i\pi j^2 \gamma} \right)_{j=0}^{N-1}, (0)_{j=0}^{N-1} \right\}$ $z = \left\{ \left(e^{i\pi j^2 \gamma} \right)_{j=0}^{N-1}, \left(e^{i\pi (N-j)^2 \gamma} \right)_{j=0}^{N-1} \right\}$ Calculate Calculate sequences of 2N points $w = \psi_0\left((j-1)g\left(\frac{a}{N}\right)\right) \odot \left(e^{i\pi(N-j)^2\gamma}\right)_{j=0}^{N-1}$ CONSOB CONSOB CONSOB CONSOB Structured DIOCUCTS broducts broducts

Fractional FFT

Fractional FFT

Non Uniform FFT

Gaussian Gridding

Step 2

Discretization on an uniform oversampled grid of $f_{\tau}(x)$

Non Uniform FFT

Non Uniform FFT

Gaussian Gridding

Computation of the Fourier Coefficient of $f_{\tau}(x)$ discretised

Non Uniform FFT

Gaussian Gridding

Step 4 NU-DFT representation of the Fourier Coefficient $F_{\tau}(n)$

Non Uniform FFT

CONSOB

Non Uniform FFT

Non Uniform FFT

Empirical Analysis

A	CCURA	CY	Point Inn	
				2
				5 Sang-on G Labor
				Ļ
				8
Structured DIOCUCTS	82	CONSOB	Structured,	icts

Empirical Analysis

Empirical Analysis

Empirical Analysis

broducts

Empirical Analysis

CONSOB

Empirical Analysis

STABILITY

Empirical Analysis

SPEED

The Computational F	ramework	Empiri	ical Analysis			Syllabus of the prese	entation	
Color Data	Computational Gain F-FFT vs NU-FFT		At very differe	low time scales, th ences <mark>are negligible</mark>	ne e	 Review of Optio The Lewis Stand DFT Convergence Convergence TH Convergence TH Fast Option Price Fractional FF Non Uniform Gaussian Gr Fractional vs Conclusions 	on Pricing via DFT lard Machine te to FT heorems for Uniform Grids heorems for Non Uniform Gaussian (ing T FFT idding: a matter of interpolation Non Uniform FFT: Empirical Ar	Grids nalsysis
Structured	91	Structure Structure	ducts	92	CONSOB	Structured, UCTS	93	CONSOB
Conclusions		Сопс	lusions			Conclusions		
	Use of Gaussian Grids		Indifference	e to Nyquist-Shannon	Limit	I	ndipendent Price Grids	
	F-FFTNONU - FFTYES			F-FFT YES NU – FFT YES			F-FFTYESNU - FFTYES	
products	94	CONSOB Structure	ducts	95	CONSOB	Structured UCTS	96	CONSOB
Conclusions		Conc	clusions			Conclusions		
	FFT's like - Accuracy		5	Stability of Pricing			Speed of Pricing	
	F-FFTYESNU - FFTYES			F-FFT NO NU – FFT YES			F-FFT YES NU – FFT YES	

CONSOB

97

Structured, UCTS

Conclusions

	F-FFT	NU – FFT
Gaussian Grids		
NS Limit		
Indipendent Grids		
Accuracy		
Stability		
Speed		

structured, ucts