

8

CONSOB

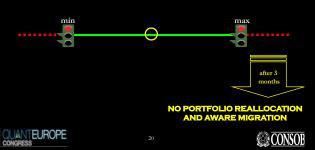
wide enough intervals do imply aware migration

The Risk Profile of Mutual Funds: Adequate Underlying Risk Metric

a bunch of volatility measures: which one to choose?

regulator looks for

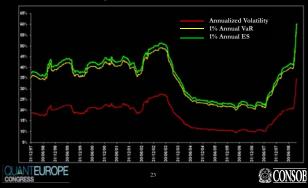
a measure consistent with the 3 months migration rule



Annualized Volatility of Daily NAV Returns

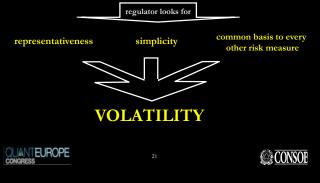
QUANTEUROPE

Diffusive GARCH: Intuition


need for volatility forecasts

wide enough intervals do imply aware migration

The Risk Profile of Mutual Funds: Adequate Underlying Risk Metric


1:1 correspondance with other risk measures

Diffusive GARCH: Intuition

a bunch of risk metrics in finance: which one to choose?

Syllabus

• The Risk Profile of Mutual Funds

· Representation via Qualitative Risk Classes

Adequate Underlying Risk Metric

Diffusive GARCH

Intuition

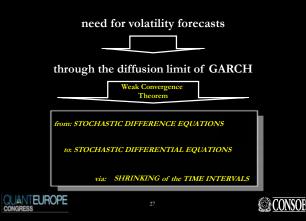
The Weak Convergence Theorem on R²

• The Continuous Limit of the M-GARCH(1,1) · The Prediction Interval for the Volatility

• The Grid of Volatility Intervals

Loss Intervals

- Mapping into Initial Volatility Intervals
- Intervals Fine-Tuning: the Iterative Procedure
- · Intervals Adequacy


• Empirical Evidence

- Preliminary Informations
- · The Evolution of the Risk Profile over Time

 Conclusions QUANTEUROPE CONGRESS

CONSOE CONSOE

Diffusive GARCH: Intuition

CONSOE

CONSOE

Diffusive GARCH: The Weak Convergence Theorem on R²

statement

Diffusive GARCH: The Weak Convergence Theorem on R²

conditions:

n. 1

statement

The sequence $\{X_t^h\}$, whose measurable space is $(\mathbb{R}^2, \mathbb{B}(\mathbb{R}^2))$, converges weakly for h 10 to the process $\{X_t\}$ which has a unique distribution and is characterized by the following stochastic differential equation:

$$dX_t = b(x,t)dt + \sigma(x,t)dW_{2,t}$$

where $W_{2,t}$ is a two-dimensional standard Brownian motion, if the conditions 1-4, presented below, are satisfied.

CONGRESS		CONSOE
Diffusive GARCH: The We	eak Convergence Theorem on R ²	
	conditions:	
	n. 1	
	If $\exists a \delta > 0$ s.t.:	
	$\lim_{h\downarrow 0} \left(\begin{array}{c} c_{h,\delta}(x_1,t) \\ c_{h,\delta}(x_2,t) \end{array} \right) = 0$	
	then ∃	
$a(x,t) \qquad \lim_{h\downarrow 0}$	$\left(\begin{array}{cc}a_h(x_1,t)&a_h((x_1,x_2),t)\\a_h((x_2,x_1),t)&a_h(x_2,t)\end{array}\right)=\left(\begin{array}{c}a(x_1,t)\\0\end{array}\right)$	$\left(\begin{array}{c} 0 \\ a(x_2,t) \end{array} \right)$
s.t.		

$\lim_{h\downarrow 0} \binom{b_h(x_1,t)}{b_h(x_2,t)} = \binom{b(x_1,t)}{b(x_2,t)}$ b(x,t)

CONGRESS

Syllabus

• The Risk Profile of Mutual Funds

- Representation via Qualitative Risk Classes
- Adequate Underlying Risk Metric

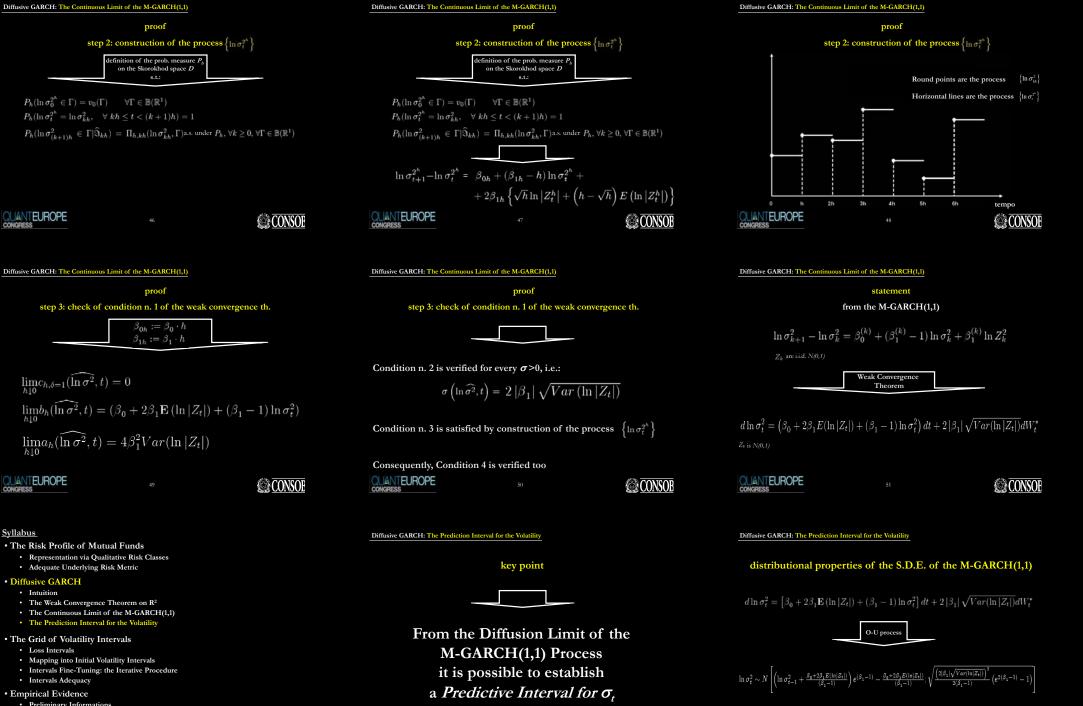
• Diffusive GARCH

- Intuition
- The Weak Convergence Theorem on R²
- The Continuous Limit of the M-GARCH(1,1)
- · The Prediction Interval for the Volatility

• The Grid of Volatility Intervals

- Loss Intervals
- Mapping into Initial Volatility Intervals
- · Intervals Fine-Tuning: the Iterative Procedure · Intervals Adequacy
- Empirical Evidence
- · Preliminary Informations
- The Evolution of the Risk Profile over Time

CONSOE



Diffusive CARCH: The Weak Convergence Theorem on Rd conditions: n, 2 $\exists \sigma(x, t) \text{ st.: } \forall x_1 \in \mathbb{R}^1, \forall x_2 \in \mathbb{R}^1,$ $f \circ \sigma(x_1, t) \circ \sigma(x_$	} has a distribution independent on the set of the set			If $\exists a \delta > 0 \text{ s.t.:}$ $\lim_{h \downarrow 0} \begin{pmatrix} c_{h,\delta}(x_1, t) \\ c_{h,\delta}(x_2, t) \end{pmatrix} = 0$	
$\begin{array}{c} \hline \\ \hline $	$P(\sup_{0 \le t \le T} \ X_t\ < \infty) = 1$				
$\begin{array}{c} \text{conditions:} \\ n.2 \\ \exists \sigma(x,t) \text{ st.: } \forall x_1 \in \mathbb{R}^1, \forall x_2 \in \mathbb{R}^1, \\ \hline ft \text{ holds} \\ \hline ft \text{ holds} \\ \hline \begin{pmatrix} \sigma(x_1,t) & 0 \\ 0 & \sigma(x_2,t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1,t)} & 0 \\ 0 & \sqrt{a(x_2,t)} \end{pmatrix} \\ \hline ft \text{ holds} \\ \hline \begin{pmatrix} \sigma(x_1,t) & 0 \\ 0 & \sigma(x_2,t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1,t)} & 0 \\ 0 & \sqrt{a(x_2,t)} \end{pmatrix} \\ \hline ft \text{ holds} \\ \hline ft h$		CONSOB			© CONSOF
$ \begin{array}{c} \mathbf{n} \cdot \mathbf{n} \\ \mathbf{f} = \sigma(x, t) \text{st: } \forall x_1 \in \mathbb{R}^1, \forall x_2 \in \mathbb{R}^1, \\ \hline \mathbf{f} \text{ inded} \\ \\ \mathbf{f} = \mathbf{f} \text{ bolds} \\ \\ \begin{pmatrix} \sigma(x_1, t) & 0 \\ 0 & \sigma(x_2, t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1, t)} & 0 \\ \sqrt{a(x_2, t)} \end{pmatrix} \\ \\ \begin{pmatrix} \sigma(x_1, t) & 0 \\ 0 & \sigma(x_2, t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1, t)} & 0 \\ \sqrt{a(x_2, t)} \end{pmatrix} \\ \\ \\ \begin{pmatrix} \sigma(x_1, t) & \sigma(x_2, t) & \sigma(x_1) \text{ and } b(x, t) \text{ uniquely specify the distribution of the processor of the structure to on (\mathbb{R}^2, \mathbb{B}(\mathbb{R}^2)) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ak Convergence Theorem on R ²		Diffusive GARCH: The Weak Conv	rergence Theorem on R ²	
$\exists \sigma(x, t) \text{ s.t. } \forall x_1 \in \mathbb{R}^1, \forall x_2 \in \mathbb{R}^1,$ $fi \text{ holds}$ $\begin{pmatrix} \sigma(x_1, t) & 0 \\ 0 & \sigma(x_2, t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1, t)} & 0 \\ \sqrt{a(x_2, t)} \end{pmatrix}$ $fi \text{ holds}$ $\begin{pmatrix} \sigma(x_1, t) & 0 \\ 0 & \sigma(x_2, t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1, t)} & 0 \\ \sqrt{a(x_2, t)} \end{pmatrix}$ $fi \text{ holds}$ $fi \text{ holds}$ $\int e^{(x_1, t)} e^{(x_1, t)} = \int e^{(x_1, t)} e^{(x_1, t)} e^{(x_1, t)} + \int e^{(x_1, t)} e^{(x_1, t)} e^{(x_1, t)} e^{(x_1, t)} + \int e^{(x_1, t)} $	conditions:			conditions:	
$\int \mathbf{t} \cdot \mathbf{t} $	n. 2			n. 3	
$\begin{pmatrix} \sigma(x_1,t) & 0 \\ 0 & \sigma(x_2,t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1,t)} & 0 \\ \sqrt{a(x_2,t)} \end{pmatrix}$ $(x_1,t) & x_2,t_1 + x_2,t_2 + x_2,t_1 + x_2,t_2 + x_2,$	$\exists \sigma(x,t)$ s.t.: $\forall x_1 \in \mathbb{R}^1, \forall x_2 \in \mathbb{R}$				X ₀ with probability
$\begin{pmatrix} \sigma(x_1,t) & 0 \\ 0 & \sigma(x_2,t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1,t)} & 0 \\ 0 & \sqrt{a(x_2,t)} \end{pmatrix}$ $v_0, a(x,t) \text{ and } b(x,t) uniquely specify the distribution of the processor of the procesor of the processor of the processor of the processor of$	it holds				
$ \begin{array}{c} \hline \textbf{CONGRESS} \hline CONG$	$\begin{pmatrix} 0\\ \sigma(x_2,t) \end{pmatrix} = \begin{pmatrix} \sqrt{a(x_1,t)}\\ 0 \end{pmatrix}$	$\left(rac{0}{a(x_2,t)} ight)$	$\{X_t\}$ characterized by an in	niquely specify the distribution v_0 , a condition:	
$ \begin{array}{c} \textbf{statement} \\ \textbf{from the M-GARCH(1,1)} \\ \begin{cases} from the M-GARCH(1,1) \\ \\ and \\ ln \sigma_{k+1}^2 - ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + \beta_1^{(k)} \ln Z_k^2 \\ or, equivalently \\ ln \sigma_{k+1}^2 - ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + 2\beta_1^{(k)} \ln Z_k^2 \\ \end{cases} \\ \tilde{Z}_k \text{ and } Z_k \text{ are iid. N(0,1)} \\ \hline \\ \tilde{Z}_k \text{ and } Z_k \text{ are iid. N(0,1)} \\ \hline \\ \hline \\ \tilde{Z}_k \text{ and } Z_k \text{ are iid. N(0,1)} \\ \hline \\ \hline \\ \textbf{statement} \\ \textbf{statement} \\ \textbf{from the M-GARCH(1,1)} \\ \hline \\ from the M-$		CONSOB CONSOB			CONSOE
$ \begin{split} \textbf{from the M-GARCH(1,1)} & \textbf{from the M-GARCH(1,1)} \\ \begin{cases} X_k - X_{k-1} = \gamma \cdot (\eta - X_{k-1}) + \sigma_k \tilde{Z}_k \\ \textbf{and} \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + \beta_1^{(k)} \ln Z_k^2 \\ \textbf{or, equivalently} \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + 2\beta_1^{(k)} \ln Z_k \end{cases} & \tilde{Z}_k \text{ and } Z_k \text{ arc iid. N0.1} \\ \tilde{Z}_k \text{ and } Z_k \text{ arc iid. N0.1} \end{pmatrix} = \tilde{Z}_k \text{ and } Z_k \text{ arc iid. N0.1} \end{split}$	ontinuous Limit of the M-GARCH(1,1)		Diffusive GARCH: The Continuou	s Limit of the M-GARCH(1,1)	
$ \begin{split} & \left\{ \begin{array}{l} X_{k} - X_{k-1} = \gamma \cdot (\eta - X_{k-1}) + \sigma_{k} \tilde{Z}_{k} \\ \text{and} \\ \ln \sigma_{k+1}^{2} - \ln \sigma_{k}^{2} = \beta_{0}^{(k)} + (\beta_{1}^{(k)} - 1) \ln \sigma_{k}^{2} + \beta_{1}^{(k)} \ln Z_{k}^{2} \\ \text{or, cquivalently} \\ \ln \sigma_{k+1}^{2} - \ln \sigma_{k}^{2} = \beta_{0}^{(k)} + (\beta_{1}^{(k)} - 1) \ln \sigma_{k}^{2} + 2\beta_{1}^{(k)} \ln Z_{k} \\ \tilde{Z}_{k} \text{ and} \\ \ln \sigma_{k+1}^{2} - \ln \sigma_{k}^{2} = \beta_{0}^{(k)} + (\beta_{1}^{(k)} - 1) \ln \sigma_{k}^{2} + 2\beta_{1}^{(k)} \ln Z_{k} \\ \tilde{Z}_{k} \text{ and} \\ \ln \sigma_{k+1}^{2} - \ln \sigma_{k}^{2} = \beta_{0}^{(k)} + (\beta_{1}^{(k)} - 1) \ln \sigma_{k}^{2} + 2\beta_{1}^{(k)} \ln Z_{k} \\ \tilde{Z}_{k} \text{ and} \\ \tilde{Z}_{k} \text{ and} \\ 2k \text{ are i.id. } N(\theta, l) \\ \end{array} \right. \end{split} $	statement			statement	
$ \begin{split} \left\{ \begin{array}{l} \text{and} \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 &= \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + \beta_1^{(k)} \ln Z_k^2 \\ \text{or, equivalently} \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 &= \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + 2\beta_1^{(k)} \ln Z_k^2 \\ \text{or, equivalently} \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 &= \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + 2\beta_1^{(k)} \ln Z_k \\ \hline \tilde{Z}_{k} \text{ and } Z_k \text{ are i.id. } N(\theta, l) \\ \hline \tilde{Z}_{k} \text{ and } Z_k \text{ are i.id. } N(\theta, l) \\ \hline \end{array} \right. \end{split} $				(,)	
\tilde{Z}_k and Z_k are i.i.d. $N(0, l)$ \tilde{Z}_k and Z_k are i.i.d. $N(0, l)$	$X_{k-1} = \gamma \cdot (\eta - X_{k-1}) + \sigma_k \widetilde{Z}_k$		$X_k - X_{k-1}$	$= \gamma \cdot (\eta - X_{k-1}) + \sigma_k \widetilde{Z}_k$	
\tilde{Z}_k and Z_k are i.i.d. $N(0, l)$ \tilde{Z}_k and Z_k are i.i.d. $N(0, l)$	$\beta_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + \beta_0^{(k)} + \beta_0^$	$^{(k)} \ln Z_k^2$	$\begin{cases} and \\ \ln \sigma_{k+1}^2 - 1 \end{cases}$	$\ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2$	$+ \beta_1^{(k)} \ln Z_k^2$
\tilde{Z}_k and Z_k are i.i.d. $N(0, l)$ \tilde{Z}_k and Z_k are i.i.d. $N(0, l)$	privalently $a_1 = \ln \sigma^2 = \beta^{(k)} + (\beta^{(k)} - 1) \ln \sigma^2 + 1$	(k) ha Z.	or, equivalen	thy $n \sigma^2 = \beta^{(k)} + (\beta^{(k)} - 1) \ln \sigma^2$.	$\pm 2\beta^{(k)} \ln Z_i $
Theorem	$+1$ \dots $k > 0 + (s_1 - 1) \dots$ $s_k + 1$	11		Weak Convergence	- 191 mil281
					V.
$dX_t = q(\mu - X_t)dt + \sigma_t dW_t$					
$d\ln\sigma_t^2 = \left(\beta_0 + 2\beta_1 E(\ln Z_t) + (\beta_1 - 1)\ln\sigma_t^2\right)dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right \sqrt{Var(\ln Z_t)} + \left(\beta_1 - 1\right)\ln\sigma_t^2 dt + 2\left \beta_1\right Var(\ln Z_t$				$Z_t) + (\beta_1 - 1) \ln \sigma_t^z dt + 2 $	$\beta_1 \sqrt{Var(\ln Z_t)} dW_t^*$
CUANTEUROPE 35 CONSOL CONSOL 36 CONSOL		CONSOB	QUANTEUROPE		CONSOE

· Preliminary Informations · The Evolution of the Risk Profile over Time

QUANTEUROPE

QUANTEUROPE

• Diffusive GARCH Intuition

Loss Intervals

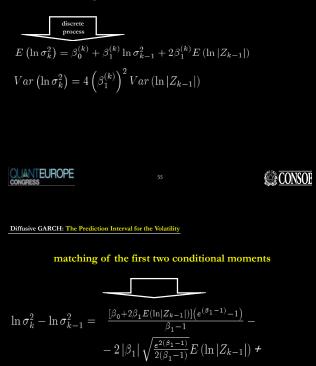
· Empirical Evidence

· Intervals Adequacy

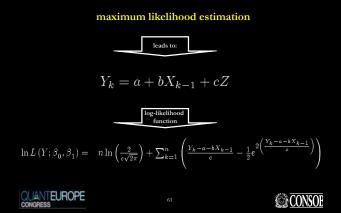
CONGRESS

Syllabus

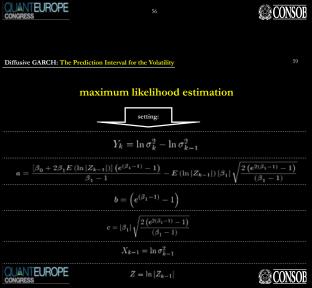
CONGRESS



CONSOB


matching of the first two conditional moments

Diffusive GARCH: The Predic	tion Interval for the Volatility	
m	ximum likelihood estimation	
	setting:	
	$Y_k = \ln \sigma_k^2 - \ln \sigma_{k-1}^2$	
$a=\frac{\left[\beta_{0}+2\beta_{1}E\left(\ln\left 2\right.\right.\right.\right]}{\beta}$	$ E_{k-1}] \left(e^{(\beta_1 - 1)} - 1 \right) - E \left(\ln Z_{k-1} \right) \beta_1 \sqrt{1 - 1}$	$\frac{\sqrt{2\left(e^{2(\beta_1-1)}-1\right)}}{(\beta_1-1)}$
	$b = \left(e^{(\beta_1-1)}-1\right)$	
	$c= \beta_1 \sqrt{\frac{2\left(e^{2(\beta_1-1)}-1\right)}{(\beta_1-1)}}$	
	$X_{k-1} = \ln \sigma_{k-1}^2$	
	$Z = \ln Z_{k-1} $	CONSOB


CONGRESS

 $+ (e^{(\beta_1 - 1)} - 1) \ln \sigma_{k-1}^2 +$

 $+2 \left| \beta_1 \right| \sqrt{\frac{e^{2(\beta_1-1)}}{2(\beta_1-1)}} \ln \left| Z_{k-1} \right|$

CONSOE

matching of the first two conditional moments

 $E\left(\ln\sigma_t^2\right) = \left(\ln\sigma_{t-1}^2 + \frac{\beta_0 + 2\beta_1 E\left(\ln|Z_t|\right)}{(\beta_1 - 1)}\right)e^{(\beta_1 - 1)} - \frac{\beta_0 + 2\beta_1 E\left(\ln|Z_t|\right)}{(\beta_1 - 1)}$

 $Var\left(\ln \sigma_t^2\right) = \frac{4\beta_1^2 Var\left(\ln |Z_t|\right)}{2\left(\beta_1 - 1\right)} \left(e^{2\left(\beta_1 - 1\right)} - 1\right)$

Diffusive GARCH: The Prediction Interval for the Volatility

 $\frac{\partial}{\partial\beta_{0}}L(Y;\beta_{0},\beta_{1})=0$

QUANTEUROPE

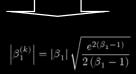
CONGRESS

$$\frac{1}{L}(Y;\beta_0,\beta_1)=0$$

CONSOB

 $\widehat{\beta_1}$

is given,


olving numerically the F.O.C.

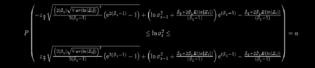
JROPE

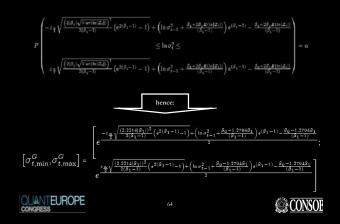
matching of the first two conditional moments

 $\beta_{0}^{(k)} = -2 \left|\beta_{1}\right| \sqrt{\frac{e^{2(\beta_{1}-1)}}{2(\beta_{1}-1)}} E\left(\ln \left|Z_{k-1}\right|\right) - \left|\beta_{1}\right| \sqrt{\frac{e^{2(\beta_{1}-1)}}{2(\beta_{1}-1)}} \ln \sigma_{k-1}^{2} + \\ + e^{(\beta_{1}-1)} \ln \sigma_{k-1}^{2} + \frac{\left|\beta_{0}+2\beta_{1}E\left(\ln \left|Z_{k-1}\right|\right)\right| \left(e^{(\beta_{1}-1)}-1\right)}{2}$

CUANTEUROPE CONGRESS CONSOR Diffusive GARCH: The Prediction Interval for the Volatility

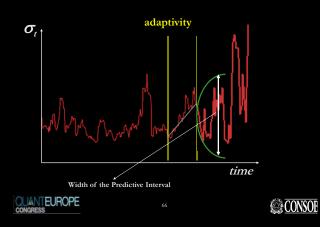
maximum likelihood estimation


 $Y_k = a + bX_{k-1} + cZ$


CONSOR

Diffusive GARCH: The Prediction Interval for the Volatility

QUANTEUROPE

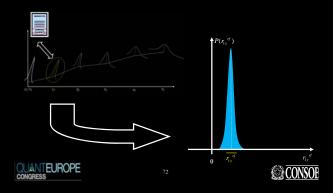

CONGRESS

Diffusive GARCH: The Prediction Interval for the Volatility

The Grid of Volatility Intervals: Loss Intervals

what is the loss in a financial investment?

LOSS \in (- 100%, $\overline{r^{rf}}$]


 $\overline{r''}$ average of the probability distribution of the risk-free rate

QUANTEUROPE CONGRESS

CONSOR

The Grid of Volatility Intervals: Loss Intervals

... the probability distribution of the 1-yr risk-free rate is selected...

The Grid of Volatility Intervals: Loss Intervals

QUANTEUROPE

CONGRESS

what is the loss in a financial investment?

time

CONSOB

CONSOB

The Grid of Volatility Intervals: Loss Intervals

Syllabus

 Diffusive GARCH Intuition

· Intervals Adequacy Empirical Evidence

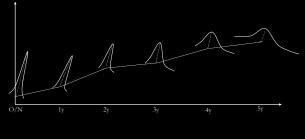
Conclusions

CONGRESS

QUANTEUROPE

Preliminary Informations

• The Risk Profile of Mutual Funds Representation via Qualitative Risk Classes

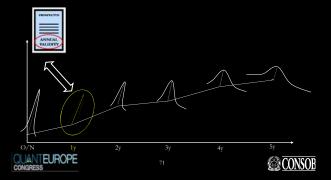

Adequate Underlying Risk Metric

 The Weak Convergence Theorem on R² • The Continuous Limit of the M-GARCH(1,1) · The Prediction Interval for the Volatility • The Grid of Volatility Intervals Loss Intervals

 Mapping into Initial Volatility Intervals · Intervals Fine-Tuning: the Iterative Procedure

The Evolution of the Risk Profile over Time

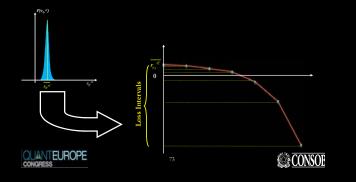
given the risk-free yield curve and the associated volatility surface...


CUANTEUROPE CONGRESS

CONSOE

The Grid of Volatility Intervals: Loss Intervals

... the probability distribution of the 1-yr risk-free rate is selected...



QUANTEUROPE

...to each risk class is associated the corresponding annual loss interval (multiple of $r_{iy}^{\ y}$ according to and exponential function)

The Grid of Volatility Intervals: Mapping into Initial Volatility Intervals

The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure

Diffusive GARCH

Models

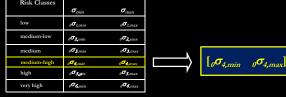
Stochastic Non-Linear Programming

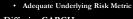
The Grid of Volatility Intervals: Loss Intervals

	Loss I	ntervals
Risk Classes	L_{min}	L_{max}
low	$_{\theta}L_{1,min}$	$_{0}L_{1,max}$
medium-low	$_{\theta}L_{2,min}$	$_{\theta}L_{2,max}$
medium	$_{\theta}L_{3,min}$	$_{\theta}L_{3,max}$
medium-high	$_{\theta}L_{4,min}$	$_{0}L_{4,max}$
high	$_{ m 0}L_{5,min}$	$_{0}L_{5,max}$
very high	$_{\theta}L_{6,min}$	$_{\theta}L_{6,max}$
ΡE		

The Grid of Volatility Intervals: Mapping into Initial Volatility Intervals

*The subscript θ preceding the volatility indicates that this is the initial interval, i.e. before the calibration


QUANTEL


CONGRESS

The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure

Syllabus

Diffusive GARCH

- Intuition
- The Weak Convergence Theorem on R²
- The Continuous Limit of the M-GARCH(1,1)
- · The Prediction Interval for the Volatility

• The Grid of Volatility Intervals

• The Risk Profile of Mutual Funds · Representation via Qualitative Risk Classes

- Loss Intervals
- Mapping into Initial Volatility Intervals
- · Intervals Fine-Tuning: the Iterative Procedure Intervals Adequacy
- Empirical Evidence
- Preliminary Informations
- · The Evolution of the Risk Profile over Time

Conclusions

QUANTEUROPE CONGRESS

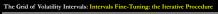
Syllabus

• The Risk Profile of Mutual Funds

- · Representation via Qualitative Risk Classes
- · Adequate Underlying Risk Metric

Diffusive GARCH

- Intuition
- The Weak Convergence Theorem on R²
- The Continuous Limit of the M-GARCH(1,1)
- · The Prediction Interval for the Volatility


• The Grid of Volatility Intervals

- Loss Intervals
- Mapping into Initial Volatility Intervals
- Intervals Fine-Tuning: the Iterative Procedure
- Intervals Adequacy

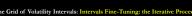
• Empirical Evidence

- Preliminary Informations
- · The Evolution of the Risk Profile over Time

CONSOR

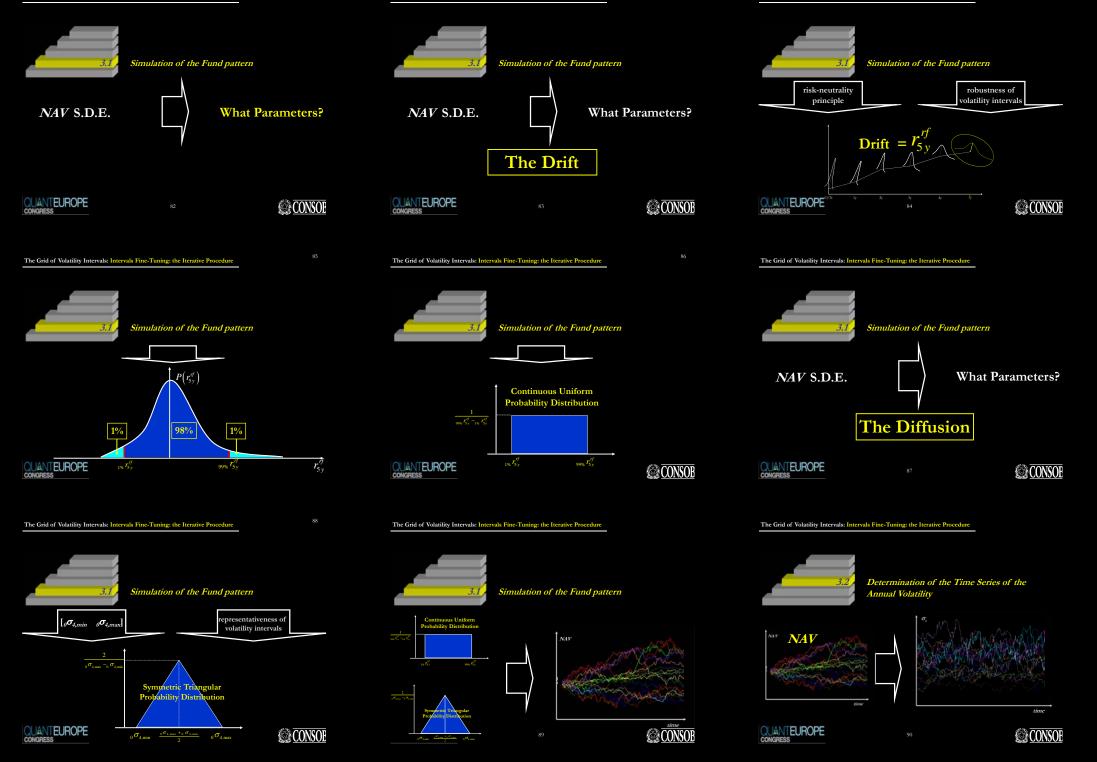
NAV Stochastic Differential Equation

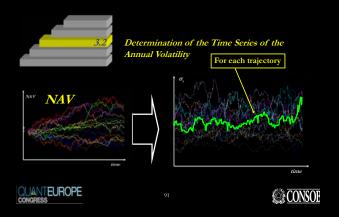
QUANTEUROPE CONGRESS

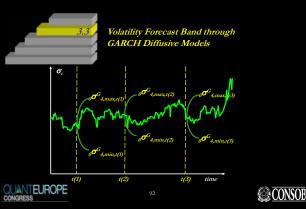


CONSOE

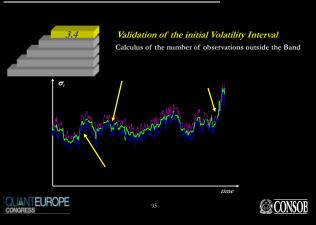
QUANTEUROPE CONGRESS

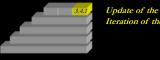






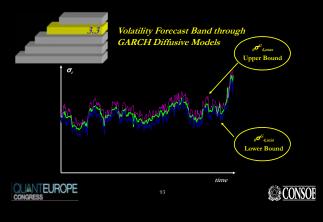
The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure




The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure

The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure

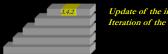
The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure



Update of the initial Volatility Interval Iteration of the Procedure

CONSOB

The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure


Validation of the initial Volatility Interval Number of observations outside the Band in 1 year

Trajectory	n° obs	$\in [_{\theta} \sigma^{G}_{4,min}]$	$\sigma^{G_{4,max}}$	n° obs.	$< {}_{\theta} \sigma^{G}_{4,min}$	n° obs.	$> {}_{\theta} \sigma^{G}_{4,max}$
1							
2							
n							
	Tot.	$\equiv \left[{}_{\theta} \sigma^{G}_{4,min} \right]_{\theta} \sigma$	G _{4,max}	Tot.	< 0 ⁶ 4,min	Tot.	$> \partial \sigma^{G}_{4,max}$

a.: n. of obs. of $\sigma = 250$ for each t

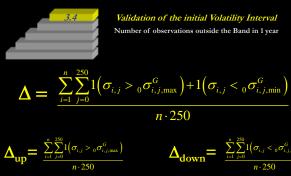
The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure

Update of the initial Volatility Interval Iteration of the Procedure

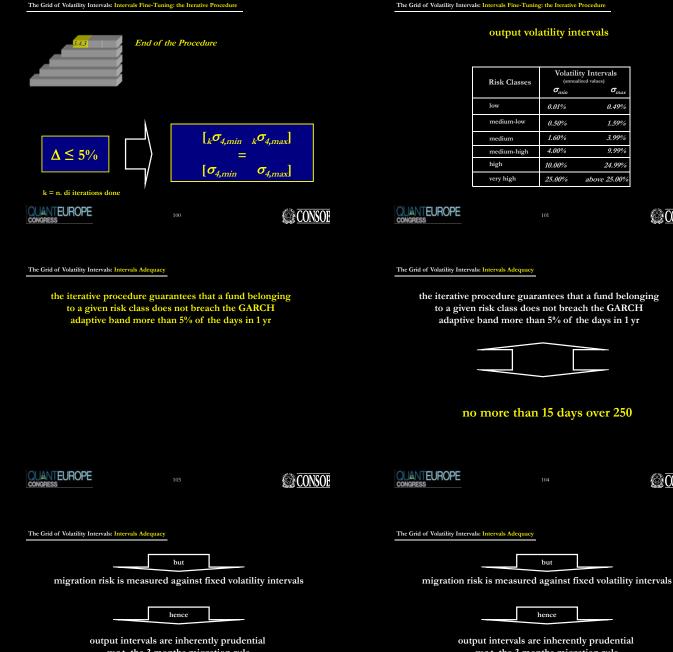


CUANTEUROPE

CONSOR


The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure

CONSOE


CONSOR

The Grid of Volatility Intervals: Intervals Fine-Tuning: the Iterative Procedure

CUANTEUROPE CONGRESS

Syllabus

• The Risk Profile of Mutual Funds

- · Representation via Qualitative Risk Classes
- · Adequate Underlying Risk Metric

Diffusive GARCH

- Intuition
- The Weak Convergence Theorem on R²
- The Continuous Limit of the M-GARCH(1,1)
- · The Prediction Interval for the Volatility

• The Grid of Volatility Intervals

- Loss Intervals
- · Mapping into Initial Volatility Intervals
- Intervals Fine-Tuning: the Iterative Procedure
- Intervals Adequacy

Empirical Evidence

- Preliminary Informations
- · The Evolution of the Risk Profile over Time

 Conclusions 	

The Grid of Volatility Intervals: Intervals Adequacy

migration risk is measured against fixed volatility intervals

 σ_{max}

0.49%

1.59%

3.99%

9.99%

24.99%

above 25.00%

no more than 15 days over 250

w.r.t. the 3 months migration rule

CONSOB

The Grid of Volatility Intervals: Intervals Adequacy

as confirmed by back-testing simulation

output intervals are inherently prudential w.r.t. the 3 months migration rule

output intervals are wide enough to avoid spurious migrations

CONGRESS

risk-neutral

drift

as confirmed by back-testing simulation

hp.: risk class

The Grid of Volatility Intervals: Intervals Adequacy

risk-neutral

drift

The Grid of Volatility Intervals: Intervals Adequacy

QUANTEUROPE

QUANTEUROPE

QUANTEUROPE

CONGRESS

CONGRESS

CONGRESS

as confirmed by back-testing simulation

drawing diffusion from a symm. triang. distrib. bounded at $[\sigma_{min} \sigma_{max}] = [4\% 9.99\%]$ to simulate an hypothetic daily NAV and to calculate the corresponding realized volatility

for each trajectory

as confirmed by back-testing simulation

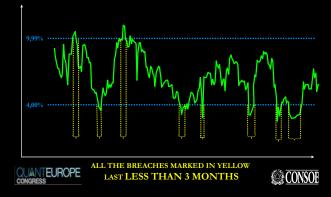
onsidering all

trajectories

Probability

≥ 95%

74 July 2006


24 October 2006

hp.: risk class

CONSOB CONSOB

CONSOB

• The Risk Profile of Mutual Funds

- · Representation via Qualitative Risk Classes
- · Adequate Underlying Risk Metric

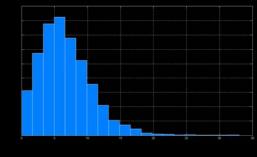
Diffusive GARCH

- Intuition
- The Weak Convergence Theorem on R²
- The Continuous Limit of the M-GARCH(1,1)
- · The Prediction Interval for the Volatility

• The Grid of Volatility Intervals

- Loss Intervals
- Mapping into Initial Volatility Intervals
- Intervals Fine-Tuning: the Iterative Procedure
- Intervals Adequacy

• Empirical Evidence


- Preliminary Informations
- · The Evolution of the Risk Profile over Time

 Conclusions QUANTEUROPE CONGRESS

CONSOR

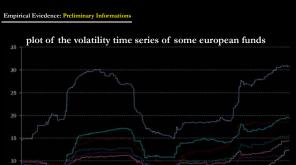
Empirical Eviedence: Preliminary Informations

volatility histogram for the sampled funds

QUANTEUROPE CONGRESS

QUANTEUROPE CONGRESS

Empirical Eviedence: Preliminary Informations


universe VS sample

MORE THAN 3 MONTHS

Country	Total (A)	Selected (B)	Representativity (B/A)
Austria	17	13	76.5%
France	92	53	57.6%
Germany	63	45	71.4%
Ireland	2	1	50.0%
Italy	58	52	89.7%
Luxembourg	252	153	60.7%
Spain	224	130	58.0%
UK	8	7	87.5%
Total	<u>716</u>	<u>454</u>	<u>63.4%</u>

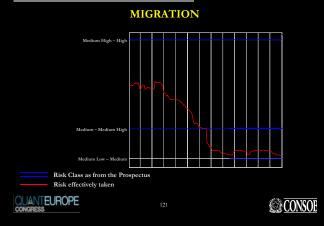
74 Lana are 2017

34 April 3887

26 July 2007

5%

3 months


time

14 October 1997 **CONSOB**

initial distribution of the 454 funds between the 6 risk classes (abs. values)

		Initial Risk Class as from 1st January 2006								
Country	1	2	3	4	5	Total				
Austria	0	0	4	8	1	<u>13</u>				
France	0	2	9	37	5	<u>53</u>				
Germany	0	2	10	26	7	<u>45</u>				
Ireland	0	1	0	0	0	1				
Italy	1	11	11	28	1	<u>52</u>				
Luxembourg	1	6	30	100	16	<u>153</u>				
Spain	0	23	33	62	12	<u>130</u>				
UK	0	0	0	5	2	<u>7</u>				
Total	<u>2</u>	<u>45</u>	<u>97</u>	<u>266</u>	<u>44</u>	<u>454</u>				
ANTEUROPE GRESS						© CON				

Empirical Evidence: The Evolution of the Risk Profile over Time

Syllabus

• The Risk Profile of Mutual Funds

- · Representation via Qualitative Risk Classes
- Adequate Underlying Risk Metric

Diffusive GARCH

- Intuition
- The Weak Convergence Theorem on R²
- The Continuous Limit of the M-GARCH(1.1)
- · The Prediction Interval for the Volatility

• The Grid of Volatility Intervals

- Loss Intervals
- · Mapping into Initial Volatility Intervals
- · Intervals Fine-Tuning: the Iterative Procedure
- · Intervals Adequacy
- Empirical Evidence
- · Preliminary Informations
- The Evolution of the Risk Profile over Time

Conclusions QUANTEUROPE CONGRESS

initial distribution of the 454 funds between the 6 risk classes (perc. values)

	Initial Risk Class as from 1st January 2006							
Country	1	2	3	4	5	Total		
Austria	0.0%	0.0%	30.8%	61.5%	7.7%	<u>100%</u>		
France	0.0%	3.8%	17.0%	69.8%	9.4%	<u>100%</u>		
Germany	0.0%	4.4%	22.2%	57.8%	15.6%	<u>100%</u>		
Ireland	0.0%	100.0%	0.0%	0.0%	0.0%	<u>100%</u>		
Italy	1.9%	21.2%	21.2%	53.8%	1.9%	<u>100%</u>		
Luxembourg	0.7%	3.9%	19.6%	65.4%	10.5%	<u>100%</u>		
Spain	0.0%	17.7%	25.4%	47.7%	9.2%	<u>100%</u>		
UK	0.0%	0.0%	0.0%	71.4%	28.6%	<u>100%</u>		
Total	<u>0.4%</u>	<u>9.9%</u>	<u>21.4%</u>	<u>58.6%</u>	<u>9.7%</u>	<u>100%</u>		
						© CONS		

Empirical Evidence: The Evolution of the Risk Profile over Time

n. of migrations between different risk classes: 01.01.2006 - 12.31.2007 (abs. values)

	Number of Migrations over the period January 2006 - December 2007								
Country	0	1	2	3	4	5	Total		
Austria	2	6	2	3	0	0	<u>13</u>		
France	20	13	8	11	1	0	<u>53</u>		
Germany	18	6	13	8	0	0	<u>45</u>		
Ireland	0	1	0	0	0	0	<u>1</u>		
Italy	15	12	17	8	0	0	<u>52</u>		
Luxembourg	63	28	34	23	4	1	<u>153</u>		
Spain	44	30	31	21	4	0	<u>130</u>		
UK	1	3	1	2	0	0	<u>7</u>		
Total	<u>163</u>	<u>99</u>	<u>106</u>	<u>76</u>	<u>9</u>	<u>1</u>	<u>454</u>		

- QUANTEUROPE CONGRESS

Conclusions

- REGULATORY ISSUE: measurement and representation of mutual funds risk profile
- ADEQUACY REQUIREMENT OF THE APPROACH: ability to pursue full risk disclosure consistently with the "standard" activity of fund managers
- DIFFUSIVE GARCH: \checkmark definition of adaptive volatility prediction bands
- EMPIRICAL EVIDENCE: the phenomenon of the migration interests more the funds belonging to the riskiest classes
- \checkmark CLOSING RECOMMENDATION: exploring other fields of application, especially to move faster towards a really levelled playing field

Syllabus

• The Risk Profile of Mutual Funds

- · Representation via Qualitative Risk Classes Adequate Underlying Risk Metric

Diffusive GARCH Intuition

- The Weak Convergence Theorem on R²
- The Continuous Limit of the M-GARCH(1,1)
- The Prediction Interval for the Volatility

• The Grid of Volatility Intervals

- Loss Intervals
- · Mapping into Initial Volatility Intervals
- · Intervals Fine-Tuning: the Iterative Procedure
- Intervals Adequacy

Empirical Evidence

- Preliminary Informations The Evolution of the Risk Profile over Time
- Conclusions QUANTEUROPE CONGRESS

Empirical Evidence: The Evolution of the Risk Profile over Time

migrations per Country: 01.01.2006 - 12.31.2007 (perc. values)

Country	0	1	2	3	4	5	Total
Austria	15.4%	<u>46.2%</u>	15.4%	23.1%	0.0%	0.0%	100%
France	<u>37.7%</u>	24.5%	15.1%	20.8%	1.9%	0.0%	100%
Germany	<u>40.0%</u>	13.3%	28.9%	17.8%	0.0%	0.0%	100%
Ireland	0.0%	<u>100.0%</u>	0.0%	0.0%	0.0%	0.0%	100%
Italy	28.8%	23.1%	<u>32.7%</u>	15.4%	0.0%	0.0%	100%
Luxembourg	<u>41.2%</u>	18.3%	22.2%	15.0%	2.6%	0.7%	100%
Spain	<u>33.8%</u>	23.1%	23.8%	16.2%	3.1%	0.0%	100%
UK	14.3%	<u>42.9%</u>	14.3%	28.6%	0.0%	0.0%	100%

CONSOR

CONSOB 🖉

VOLATILITY METRICS TO ASSESS RELATIVE RISK IN THE **OUANTITATIVE PORTFOLIO MANAGEMENT OF MUTUAL FUNDS:**

A REGULATORY APPROACH BASED ON DIFFUSIVE GARCH

MARCELLO MINENNA GIOVANNA MARIA BOI

CONSOE CONSOE

