

Syllabus of the presentation

- · Unbundling structured products · Structured Bonds Italian market
- Review of Option Pricing in Affine Jump Diffusion Models
- Implementation of Fourier Trasform approach
- Implementation of Fast Fourier Trasform approach · Rules of Thumb

Syllabus of the presentation

- · Structured Bonds Italian market
- Review of Option Pricing in Affine Jump Diffusion Models
- · Implementation of Fourier Trasform approach
- Implementation of Fast Fourier Trasform approach · Rules of Thumb

 \boxtimes

<u>© CONSOB</u>

<u>© CONSOB</u>

<u>CONSOB</u>

Derivative Component

Derivative Component

Bond Component

Derivative Component Bond Component Structured Products

Syllabus of the presentation

- · Unbundling structured products • Structured Bonds Italian market
- Review of Option Pricing in Affine Jump Diffusion Models
- Implementation of Fourier Trasform approach
- Implementation of Fast Fourier Trasform approach

· Rules of Thumb

Structured Bonds in Italy

Primary Market trend 1995 – sept '05

<u>CONSOB</u>

- · Unbundling structured products · Structured Bonds Italian market
- Review of Option Pricing in Affine Jump Diffusion Models
- Implementation of Fourier Trasform approach
- Implementation of Fast Fourier Trasform approach
- · Rules of Thumb

Minenna, A guide to quantitative Finance, RiskBooks 2006

 $P_1(\Theta), P_2(\Theta) = \Pr(\ln S_T \ge \ln K)$ under different martingale measures

<u>CONSOB</u>

 \boxtimes

CONSOB

AJD models compute C_i

 \boxtimes

Newton-Cotes schemes compute C, Trapezoid rule

Newton-Cotes schemes compute C, Trapezoid rule

> Simpson rule FT

Newton-Cotes schemes compute C, Trapezoid rule FT $C_i \approx \frac{e^{-\alpha \ln K}}{2\pi} \frac{a}{N} \Re \left[\sum_{i=1}^{N} e^{-ij\hbar \ln K} f_2 \left(j \frac{a}{N} \right) \right]$

AJD models compute C_i

FT

 $C_t = u(f_2)$

Newton-Cotes schemes compute C, Simpson rule

© CONSOB

 \boxtimes

 \mathbf{X}

×

© CONSOB

© CONSOB

 \boxtimes

© CONSOB

© CONSOB

<u>CONSOB</u>

© CONSOB

X

N

<u>CONSOB</u>

CONSOB

Review of Fourier Methods in Option Pricing - theory

$$\begin{split} C_{t} \approx & \left[\frac{1}{2} + \frac{1}{\pi}\right) \left[s, \sum_{j=0}^{N} [3 + (-1)^{(i)} - \delta_{j}] \cdot \Re \left[\frac{e^{-\frac{\pi^{2}}{N} \ln K}}{i(j + \varepsilon \delta_{j})} f_{1}\left[j\frac{a}{N}\right]\right] - \\ & - \underbrace{Ke^{-i(T-i)} \sum_{j=0}^{N} [3 + (-1)^{(i)} - \delta_{j}] \cdot \Re \left[\frac{e^{-\frac{\pi^{2}}{N} \ln K}}{i(j + \varepsilon \delta_{j})} f_{2}\left[j\frac{a}{N}\right]\right]}_{\mathbf{PDE}} \end{split}$$

Newton-Cotes schemes compute C_i Simpson rule

€ CONSOB

€ CONSOB

© CONSOB

Review of Fourier Methods in Option Pricing - theory

PDE $C_t = h[P_1(f_1), P_2(f_2)]$ Newton-Cotes schemes compute C_i Numerical evaluation Newton-Cotes $C_{i} \approx \frac{e^{-\alpha \ln K}}{2} \frac{a}{N} \Re \left[\sum_{j=1}^{N} \left[3 + (-1)^{j+1} - \delta_{j} \right] \cdot e^{-ijk \ln K} f_{2} \left(j \frac{a}{N} \right) \right]$

 \square

 \boxtimes

 \boxtimes

Review of Fourier Methods in Option Pricing - theory

Gauss schemes compute C_t

N

X

$$C_{i} \approx S_{i} \left(\frac{1}{2} + \frac{1}{\pi}\right) a \left[\frac{1}{N(N-1)} \Re\left[\frac{e^{-in\kappa}}{i\epsilon} f_{i}(\varepsilon)\right] + \Re\left[\frac{e^{-in\kappa}}{i\epsilon} f_{i}(a)\right] + \\
+ \sum_{j=1}^{N-1} \frac{1}{N(N-1)} \left[P_{s,a}(\xi_{j})\right]^{2} \Re\left[\frac{e^{-i\left[\frac{N}{2}(i)+\xi_{j}\right]}}{i\left[\frac{1}{2}a(1+\xi_{j})\right]} f_{i}\left[\frac{1}{2}a(1+\xi_{j})\right]\right] - \\
- Ke^{-i(T-i)} \left[\frac{1}{2} + \frac{1}{\pi}\right] a \left[\frac{1}{N(N-1)} \Re\left[\frac{e^{-in\kappa}}{i\epsilon} f_{j}(\varepsilon)\right] + \Re\left[\frac{e^{-in\kappa}}{i\epsilon} f_{j}(a)\right] + \\
+ \sum_{j=1}^{N-1} \frac{1}{N(N-1)[P_{s,a}(\xi_{j})]^{2}} \Re\left[\frac{e^{-i\left[\frac{N}{2}(i-\xi_{j})\right]}}{i\left[\frac{1}{2}a(1+\xi_{j})\right]} f_{i}\left[\frac{1}{2}a(1+\xi_{j})\right]\right] \\
\boxed{PDE}$$
Gauss schemes compute C_{i}

Review of Fourier Methods in Option Pricing - theory

Review of Fourier Methods in Option Pricing - theory

Review of Fourier Methods in Option Pricing - theory

© CONSOB

Syllabus of the presentation

- · Unbundling structured products
- · Structured Bonds Italian market
- · Review of Option Pricing in Affine Jump Diffusion Models
- Implementation of Fourier Trasform approach
- Implementation of Fast Fourier Trasform approach
- · Rules of Thumb

 \boxtimes

Review of Fourier Methods in Option Pricing - theory

 C_{t} via FT $C_t = u \left\{ g^{-1} \left[P_2(\Theta, \alpha) \right] \right\}$

© CONSOB

calibration of α

Review of Fourier Methods in Option Pricing - theory

C, via FT - spanning Θ, α Stochastic volatility models

<u>CONSOB</u>

CONSOB

© CONSOB

 \mathbf{X}

 \square

requires

determines

via FT

Choice of a according to:

<u>© CONSOB</u>

<u>© CONSOB</u>

© CONSOB

Quadrature algorithms

Fessler-Sutton

NonUniform FFT

 C_{t} via FT

Convergence theorems

C via DFT

determines

- Option features - Quadrature algorithr

Choice of a according to:

<u>©</u> CONSOB

<u>CONSOB</u>

· Implementation of Fourier Trasform approach

• Implementation of Fast Fourier Trasform approach

• Review of Option Pricing in Affine Jump Diffusion Models

Syllabus of the presentation

· Rules of Thumb

 \boxtimes

 \boxtimes

· Unbundling structured products

· Structured Bonds Italian market

Minenna, A guide to quantitative Finance, RiskBooks 2006

 C_{t} via FT

Convergence theorems

 \overrightarrow{C} via DFT

© CONSOB

Syllabus of the presentation

- Unbundling structured products
- · Structured Bonds Italian market
- Review of Option Pricing in Affine Jump Diffusion Models
- Implementation of Fourier Trasform approach
- · Implementation of Fast Fourier Trasform approach
- Rules of Thumb

C_{\star} via FT - spanning Θ, α Stochastic volatility models

Fast Fourier Trasform

Algorithms

N

		VOLATILITY	
		LOW	HIGH
MATURITY	SHORT	Simpson [$\alpha \approx (1,5;1,6)$] Gauss-Lobatto [$\alpha \approx (1,9;2)$] Gauss-Laguerre [$\alpha \approx (1,9;2)$]	Simpson [$\alpha \approx (1,05;1,1)$] Gauss-Lobatto [$\alpha \approx (1,15;1,2)$] Gauss-Laguerre [$\alpha \approx (1,15;1,2)$]
	TONG	Gauss-Lobatto [α ≈(0,35;0,45)] Gauss-Laguerre [α ≈(0,6;0,65)]	Gauss-Lobatto [α≈(0,4;0,45)] Gauss-Laguerre [α≈(0,5;0,55)]

C via FT - spanning Θ, α Jump diffusion models

		VOLATILITY		
		LOW	HIGH	
URITY	SHORT	Gauss-Lobatto [$\alpha \approx (1,4;2)$] Gauss-Laguerre [$\alpha \approx (1,55;2)$]	Gauss-Lobatto [$\alpha \approx (1,8;2,2)$] Gauss-Laguerre [$\alpha \approx (1,8;2,2)$]	
MAT	LONG	Gauss-Lobatto [α ≈(0,9;1,2)] Gauss-Laguerre [α ≈(0,95;1,05)]	Simpson $[\alpha \approx (0,6;0,7)]$ Gauss-Lobatto $[\alpha \approx (0,35;0,45)]$ Gauss-Laguerre $[\alpha \approx (0,6)]$	

