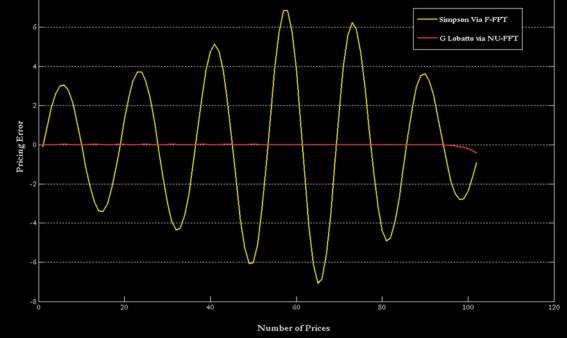
Numerical Methods in Semianalytical Derivatives Pricing

Efficient Solutions for Standard, Fractional and Non Uniform Discrete Transforms



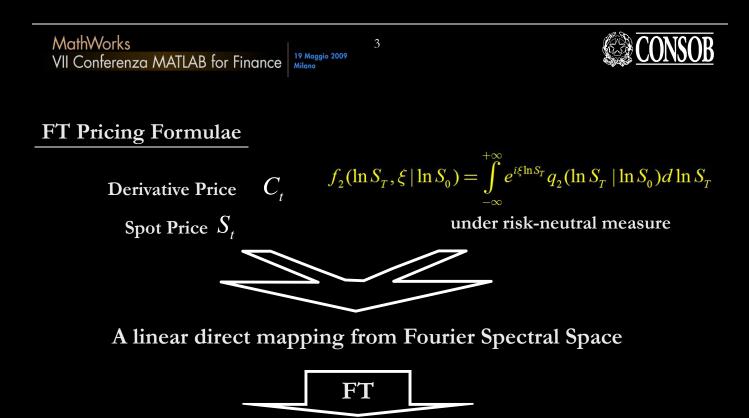
Syllabus of the presentation

• Review of Derivative Pricing via DFT

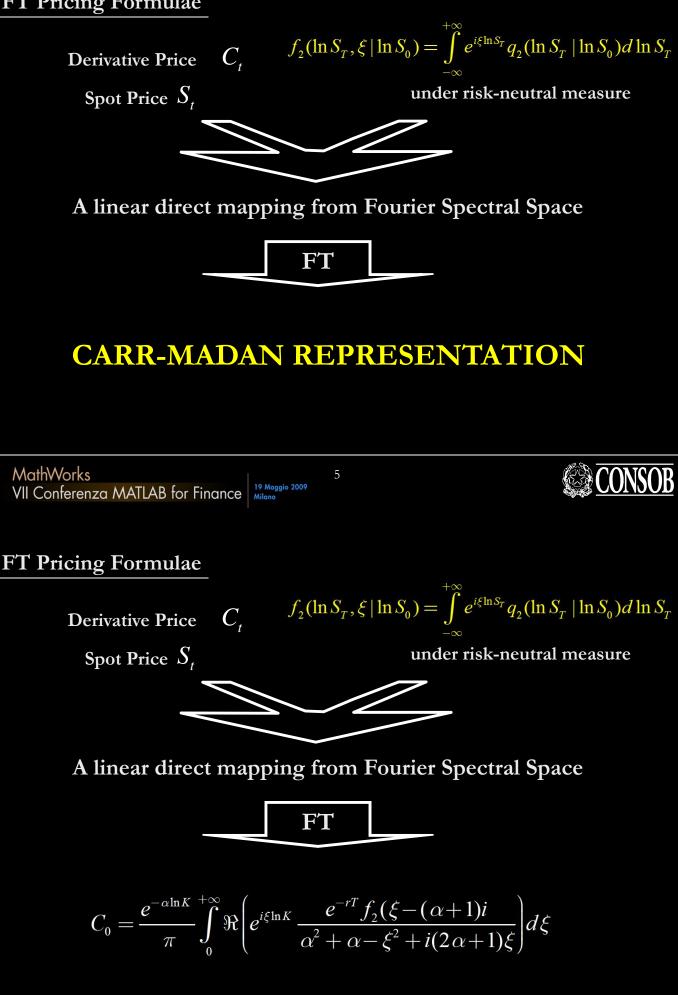
- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids
- Fast Derivative Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 - Conclusions

• Review of Derivative Pricing via DFT

- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids



FT Pricing Formulae



FT Pricing Formulae

means choosing a dampened oscillating characteristic function

CARR-MADAN REPRESENTATION

MathWorks VII Conferenza MATLAB for Finance Milano

FT Pricing Formulae

means choosing a dampened oscillating characteristic function

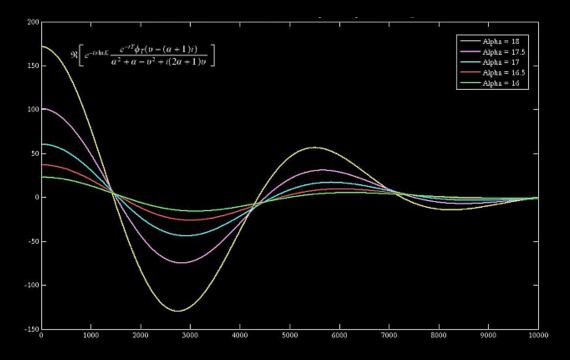
Recent Developments:

Lee, 2004 - Journal of Computational Finance

Minenna, Verzella - Quant Congress 2006

Lord, Kahl, 2007 - Journal of Computational Finance

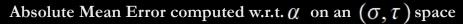
CARR-MADAN REPRESENTATION

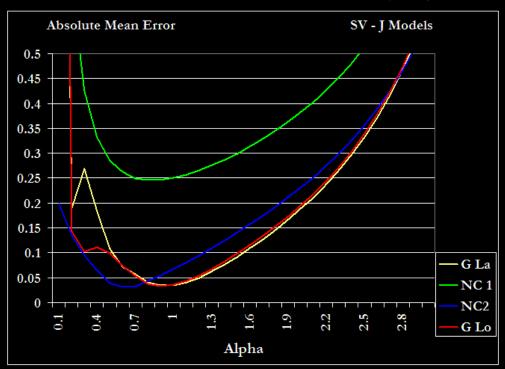


CARR-MADAN REPRESENTATION

MathWorks VII Conferenza MATLAB for Finance	9 Maggio 2009 Jano
--	--------------------------

FT Pricing Formulae

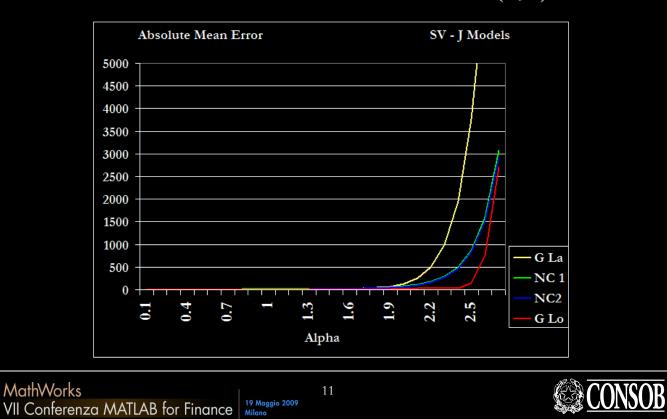




FT Pricing Formulae

Stability

Absolute Mean Error computed w.r.t. α on an Extended (σ, τ) space

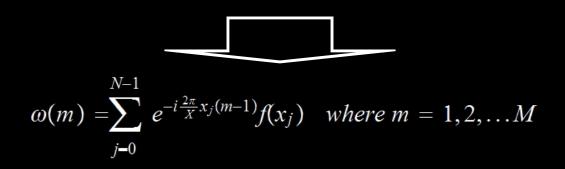


Syllabus of the presentation

• Review of Derivative Pricing via DFT

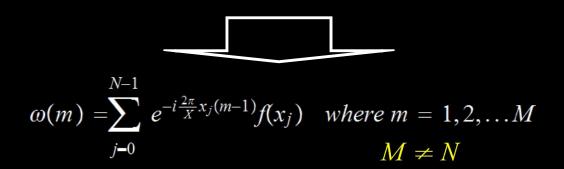
- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

Given the General DFT

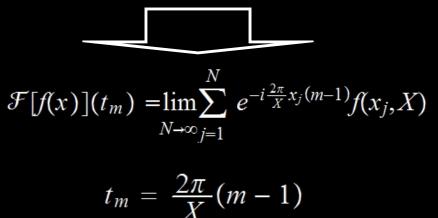


DFT Convergence to FT

Given the General DFT



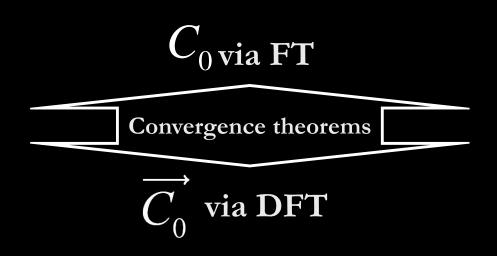
The Convergence Theorem for General DFT's (C Th)



MathWorks VII Conferenza MATLAB for Finance Milano

15

DFT Convergence to FT



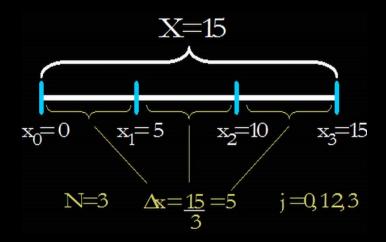
• Review of Derivative Pricing via DFT

- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

Convergence Theorems for Uniform Grids

Condition 1

Uniform Discretization Grid



Condition 2



MathWorks VII Conferenza MATLAB for Finance Milano

Convergence Theorems for Uniform Grids

Condition 1

Condition 2

CONSOB

19

DFT Simplified Formula

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi k j \gamma} f(x_j)$$
 where $n = 1...N$

Nyquist – Shannon Limit (N-S)

$$\mathcal{F}[f(x)](t_n) = \lim_{N \to \infty} \frac{X}{N} \omega(n)$$

$$\{t_n\}_{n=1..\frac{N}{2}}$$
 for N even

21

$$\{t_n\}_{n=1..\frac{N+1}{2}}$$

for N odd

MathWorks VII Conferenza MATLAB for Finance Milano

1

CONSOB

Convergence Theorems for Uniform Grids

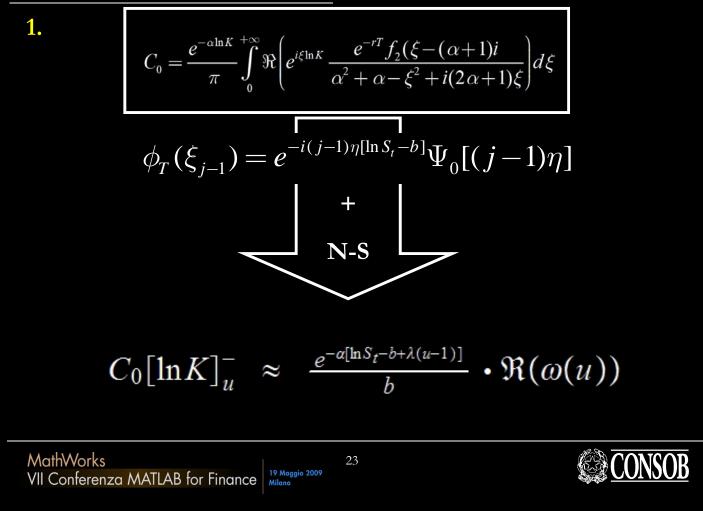
$$C_0 = \frac{e^{-\alpha \ln K}}{\pi} \int_0^{+\infty} \Re \left(e^{i\xi \ln K} \frac{e^{-rT} f_2(\xi - (\alpha + 1)i)}{\alpha^2 + \alpha - \xi^2 + i(2\alpha + 1)\xi} \right) d\xi$$

Uniform Discretization Grids for f

1.
$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_t - b]} \Psi_0[(j-1)\eta]$$

2.
$$\phi_T(\xi_{j-1}) = e^{-i(j-1)\eta[\ln S_t - b]} \Psi_0[(j-1)\eta] \cdot [3 + (-1)^{j+1} - \delta_j - \delta_{N-j}]$$

Convergence Theorems for Uniform Grids



Convergence Theorems for Uniform Grids

2. $C_{0} = \frac{e^{-\alpha \ln K}}{\pi} \int_{0}^{+\infty} \Re \left[e^{i\xi \ln K} \frac{e^{-rT} f_{2}(\xi - (\alpha + 1)i)}{\alpha^{2} + \alpha - \xi^{2} + i(2\alpha + 1)\xi} \right] d\xi$ $\phi_{T}(\xi_{j-1}) = e^{-i(j-1)\eta [\ln S_{t} - b]} \Psi_{0}[(j-1)\eta] \cdot [3 + (-1)^{j+1} - \delta_{j} - \delta_{N-j}]$ + N-S $C_{0}[\ln K]_{u}^{-} \approx \frac{e^{-\alpha [\ln S_{t} - b + \lambda(u-1)]}}{3b} \cdot \Re(\omega(u))$

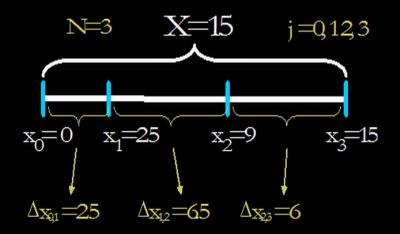
• Review of Derivative Pricing via DFT

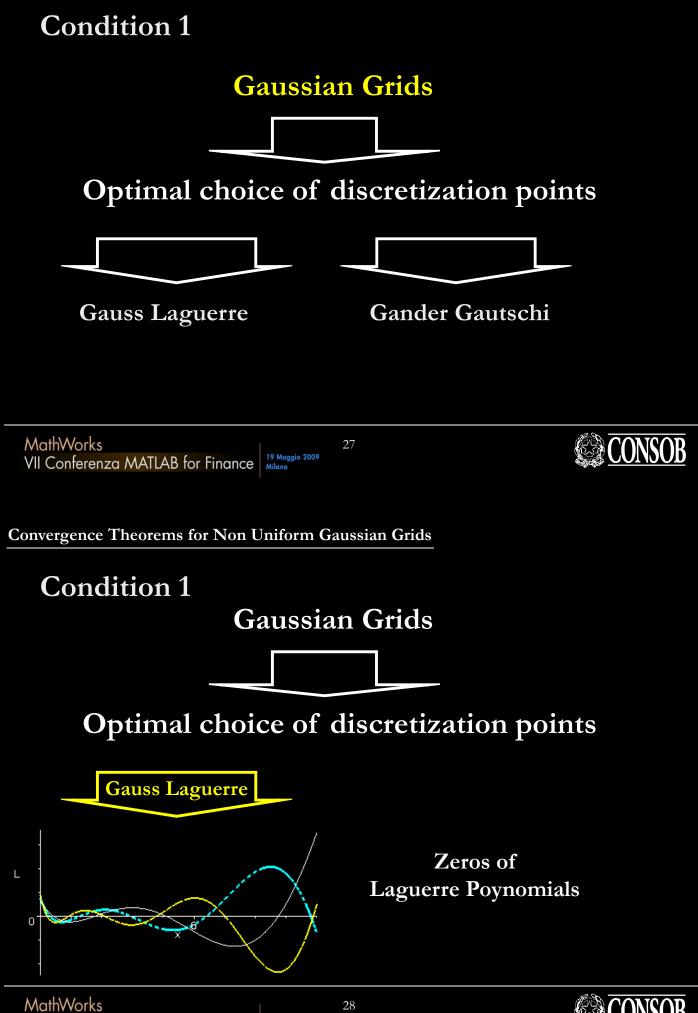
- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

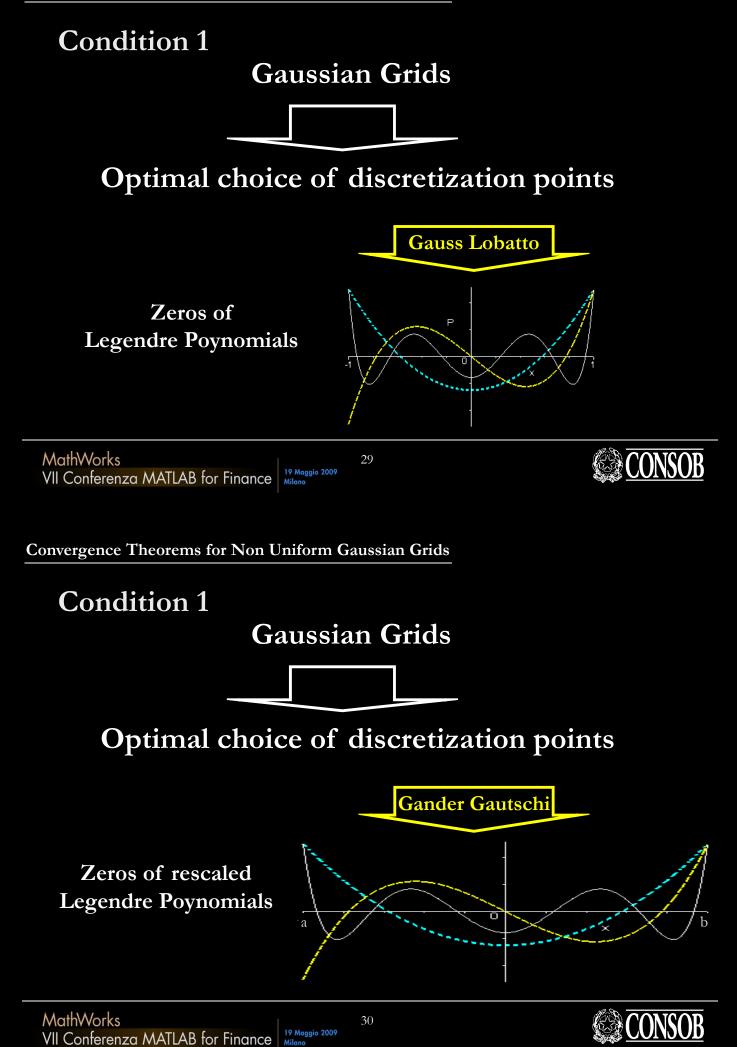
Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

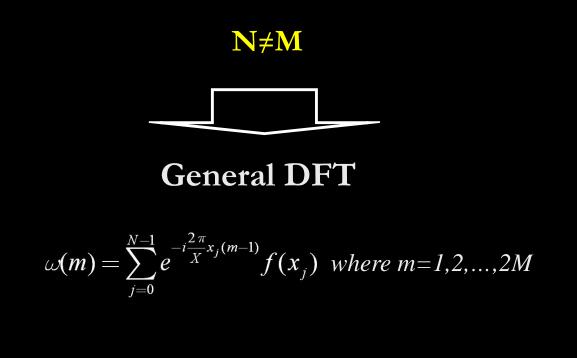
Non Uniform Discretization Grid







Condition 2



MathWorks VII Conferenza MATLAB for Finance

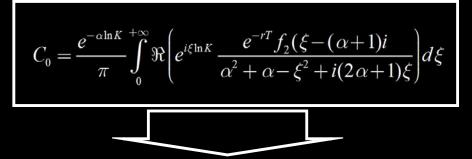
io 2009

Convergence Theorems for Non Uniform Gaussian Grids

The Convergence Theorem for General DFT's (C Th)

$$\mathcal{F}[f(x)](t_m) = \lim_{N \to \infty} \sum_{j=1}^{N} e^{-i\frac{2\pi}{X}x_j(m-1)} f(x_j, X)$$
$$t_m = \frac{2\pi}{X} (m-1)$$

Convergence Theorems for Non Uniform Gaussian Grids



Gaussian Grids for f

$$1. \quad \phi_{T} \left(\xi_{j-1}\right) = e^{\left[1 + i\left(\frac{M\pi}{a^{*}} - \ln S_{t}\right)\right]\xi_{j-1}} \Psi_{0}\left[\xi_{j-1}\right] \cdot \frac{1}{L_{N+1}\left(\xi_{j-1}\right)L'_{N}\left(\xi_{j-1}\right)}$$
$$2. \quad \phi_{T}\left(\frac{1}{2}a\left(1 + \xi_{j-1}\right)\right) = e^{\left[-i\left(\frac{1}{2}a\left(1 + \xi_{j-1}\right)\right)\left(\ln S_{t} - \frac{M\pi}{a^{*}}\right)\right]} \Psi_{0}\left[\frac{1}{2}a\left(1 + \xi_{j-1}\right)\right] \cdot \frac{1}{\left[P_{N-1}\left(\xi_{j-1}\right)\right]^{2}}$$

33

MathWorks VII Conferenza MATLAB for Finance Milano

Convergence Theorems for Non Uniform Gaussian Grids

1.

$$C_{0} = \frac{e^{-\alpha \ln K}}{\pi} \int_{0}^{+\infty} \Re \left[e^{i\xi \ln K} \frac{e^{-iT} f_{2}(\xi - (\alpha + 1)i)}{\alpha^{2} + \alpha - \xi^{2} + i(2\alpha + 1)\xi} \right] d\xi$$

$$\phi_{T}(\xi_{j-1}) = e^{\left[1 + i \left[\frac{M\pi}{a^{*}} - \ln S_{i}\right]\right]\xi_{j-1}} \Psi_{0}[\xi_{j-1}] \cdot \frac{1}{L_{N+1}(\xi_{j-1})L'_{N}(\xi_{j-1})} + C_{0}([\ln K]_{u}^{*}) \approx -\Re \left[\frac{e^{-\alpha \left(\ln S_{t} - \frac{M\pi}{a^{*}} + \frac{2\pi}{a^{*}}(u-1)\right)}}{\pi} \frac{1}{N+1} \cdot \omega^{*}(u) \right]$$

CONSOB

2. $C_{0} = \frac{e^{-\alpha \ln K}}{\pi} \int_{0}^{+\infty} \Re \left[e^{i\xi \ln K} \frac{e^{-rT} f_{2}(\xi - (\alpha + 1)i)}{\alpha^{2} + \alpha - \xi^{2} + i(2\alpha + 1)\xi} \right] d\xi$ $\phi_{T} \left(\frac{1}{2} a \left(1 + \xi_{j-1} \right) \right) = e^{\left[-i \left(\frac{1}{2} a (1 + \xi_{j-1}) \right) \right] \left(\ln S_{r} - \frac{M\pi}{a^{*}} \right) \right]} \Psi_{0} \left[\frac{1}{2} a \left(1 + \xi_{j-1} \right) \right] \cdot \frac{1}{\left[P_{N-1} \left(\xi_{j-1} \right) \right]^{2}}$ $+ \int_{C-Th} \int_{C-Th} \int_{U} \int_{U}$

35

MathWorks VII Conferenza MATLAB for Finance Milano^{19 Maggio 2009}

Syllabus of the presentation

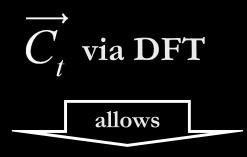
• Review of Derivative Pricing via DFT

- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

• Fast Derivative Pricing

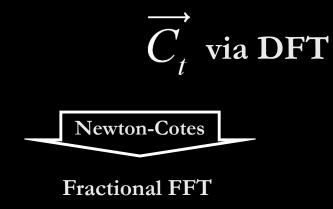
- Fractional FFT
- Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions

CONSOB



Fast Fourier Trasform Algorithms

Fast Option Pricing



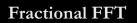
Syllabus of the presentation

• Review of Derivative Pricing via DFT

- The Lewis Standard Machine
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

Fast Derivative Pricing

- Fractional FFT
- Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analysis
- Conclusions



The Fractional DFT

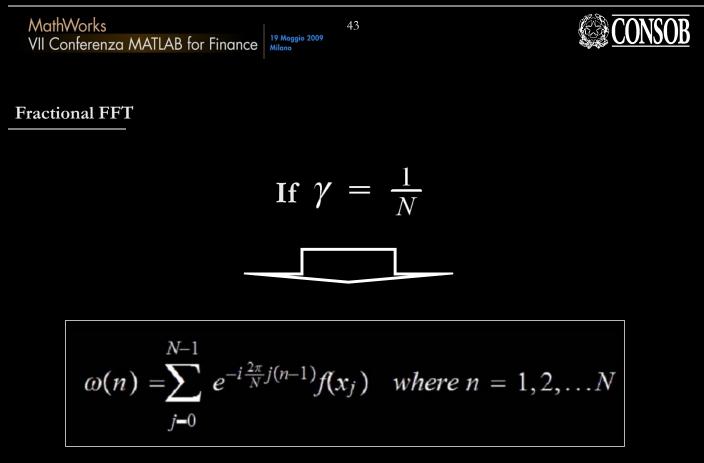
Fractional FFT

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi k j \gamma} f(x_j)$$
 where $n = 1...N$

The Fractional DFT

$$\omega(n) = \sum_{j=0}^{N-1} e^{-i2\pi k j \gamma} f(x_j) \quad where \quad n = 1...N$$

with γ that can be any complex number



The standard DFT definition

Choosing two indipendent uniform grids MathWorks CONSOB 45 VII Conferenza MATLAB for Finance Milano **Fractional FFT** Choosing two indipendent uniform grids $x_j = jg\left(\frac{a}{N}\right)$ for j = 1...N**Spectral Grid**

$$\left[\ln K\right]_{u}^{*} = \ln S_{t} - b + \lambda_{u} \quad for \ u = 1, \dots, N$$

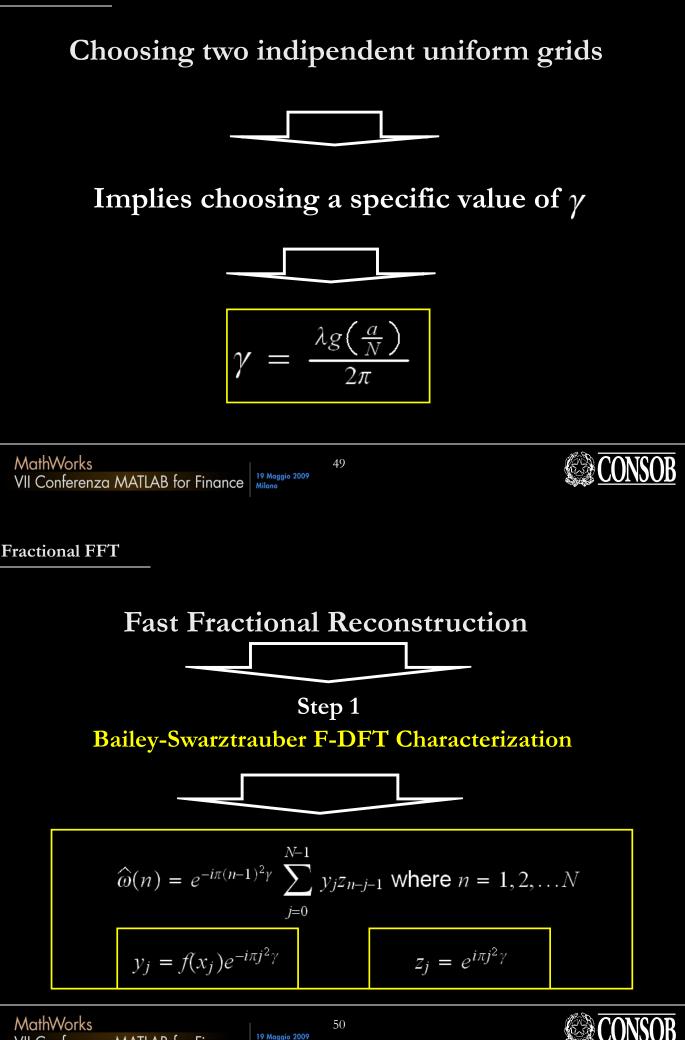
Log-Strike Grid

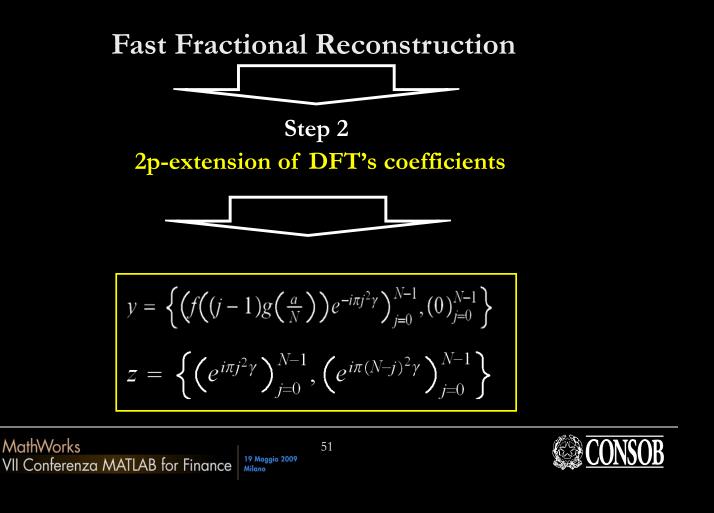
Choosing two indipendent uniform grids

Fractional FFT

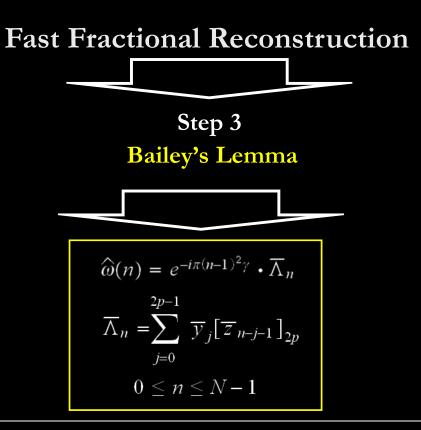
Choosing two indipendent uniform grids

Implies choosing a specific value of γ

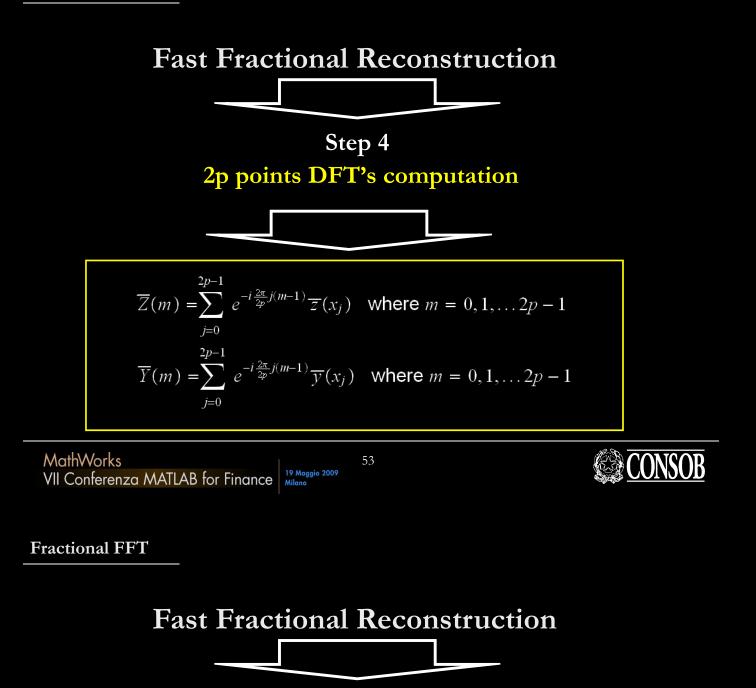




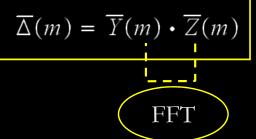
Fractional FFT

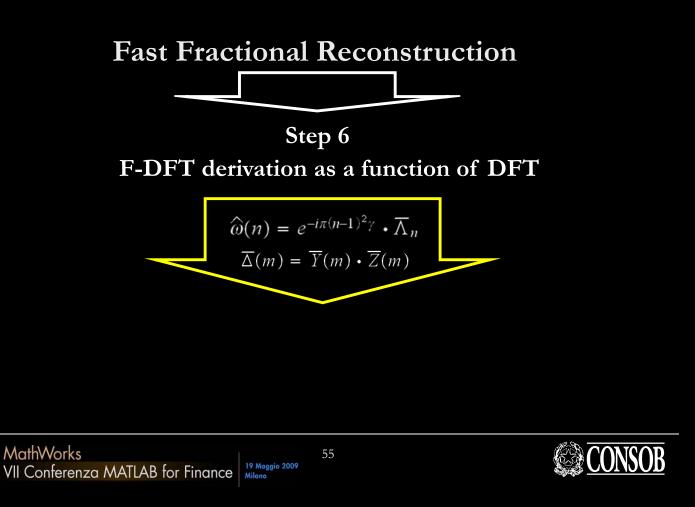


MathWorks VII Conferenza MATLAB for Finance

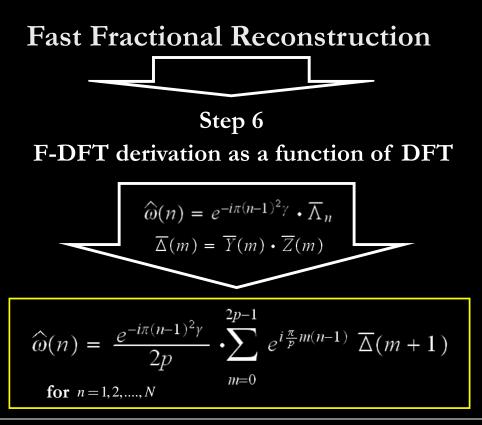


Circular Convolution Theorem





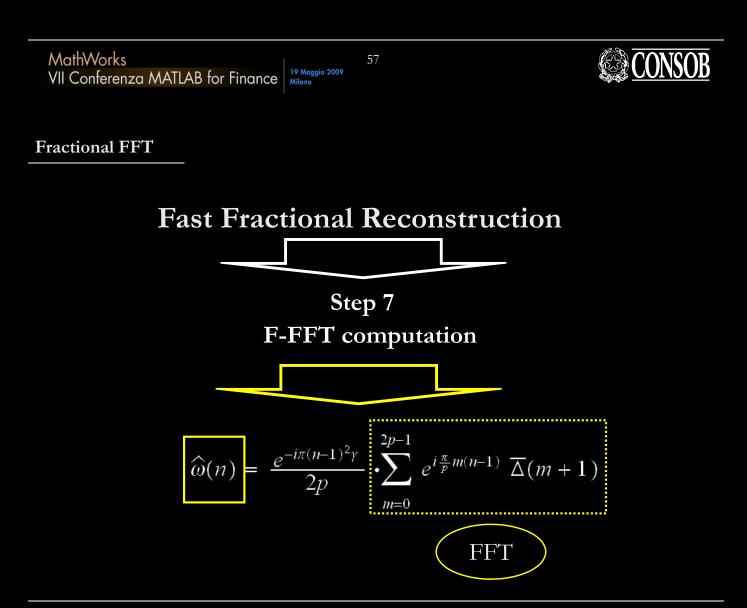
Fractional FFT

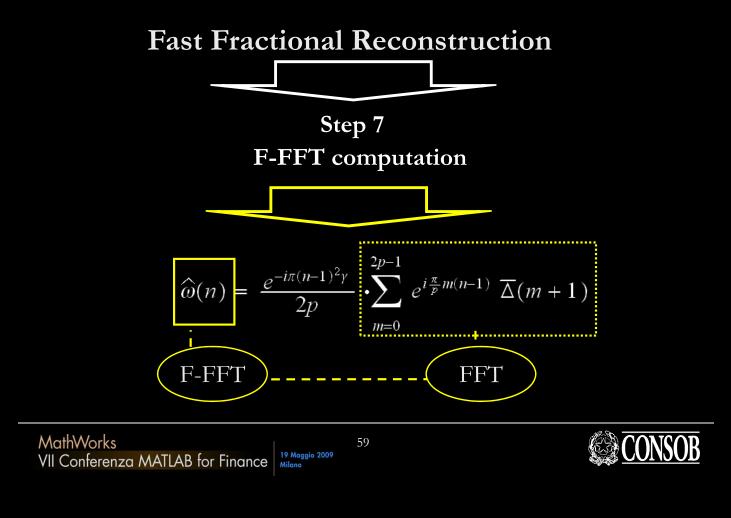


19 Maggio 2009

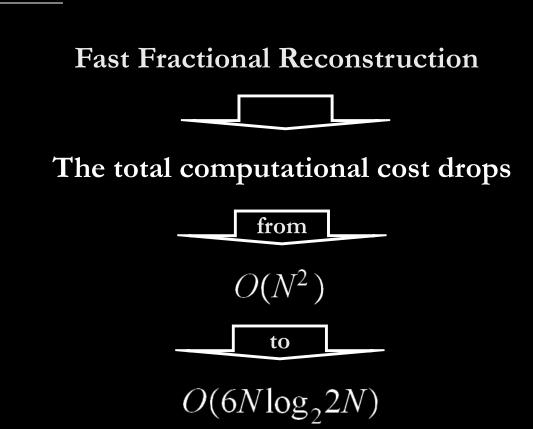
Fast Fractional Reconstruction

Step 7 F-FFT computation





Fractional FFT

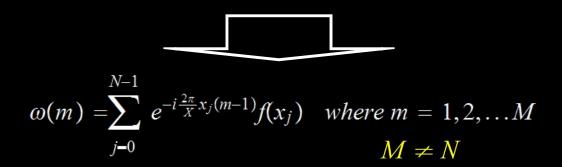


• Review of Derivative Pricing via DFT

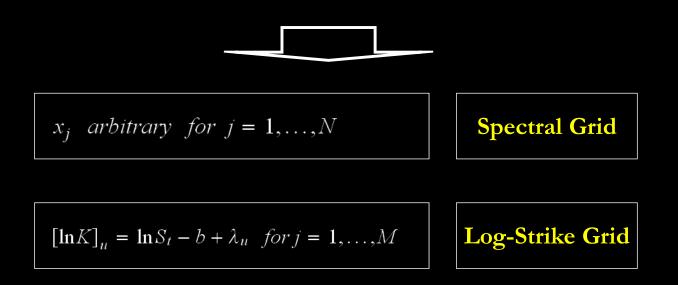
- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids
- Fast Derivative Pricing
 - Fractional FFT
 - Non Uniform FFT
 - Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analsysis
 - Conclusions

Non Uniform FFT

The Non Uniform DFT



Choosing two perfectly indipendent grids



Non Uniform FFT

Choosing two perfectly indipendent grids

It's a natural property of the Non Uniform Approach

Gaussian Gridding Reconstruction



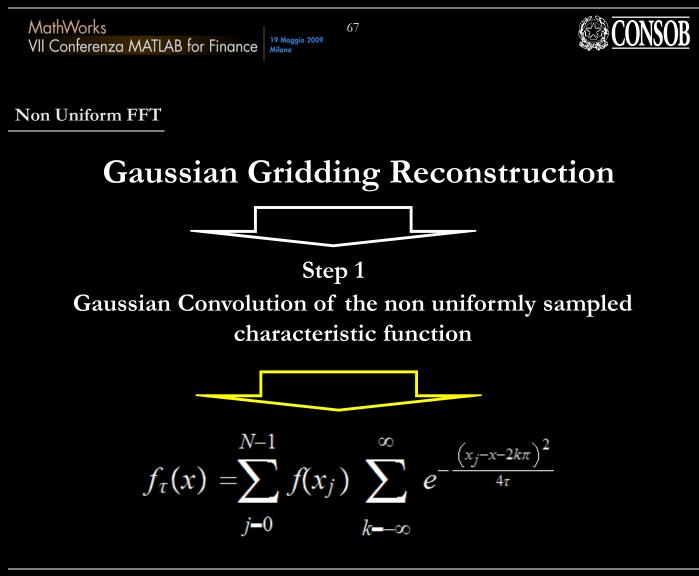
Non Uniform FFT

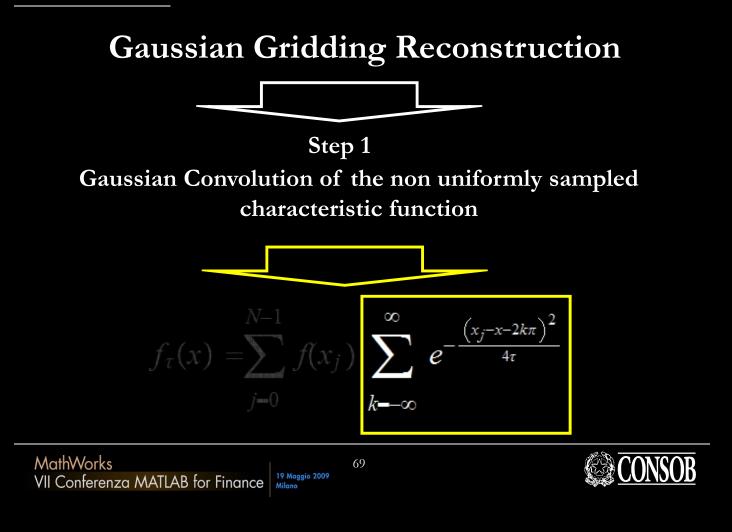
Gaussian Gridding Reconstruction

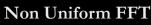
Step 1

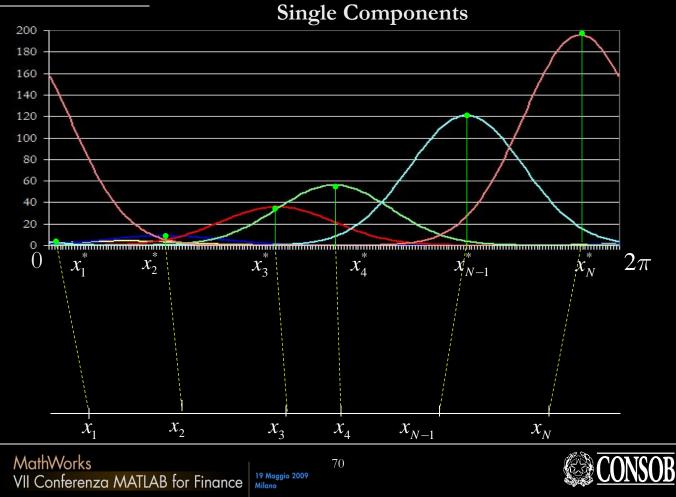
Step 1

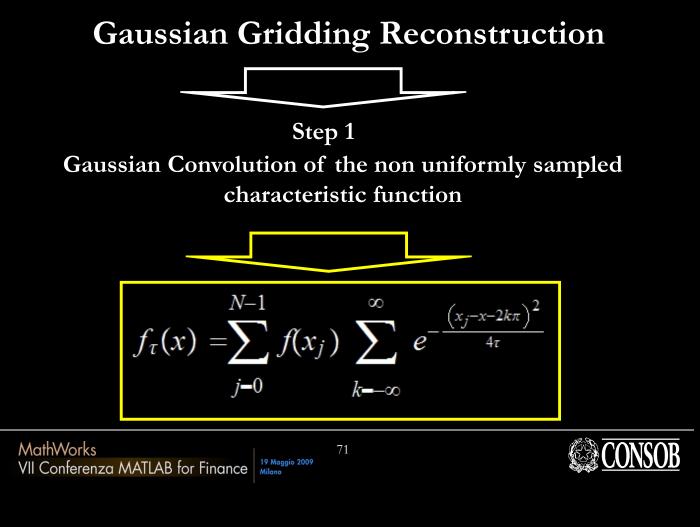
Gaussian Convolution of the non uniformly sampled characteristic function



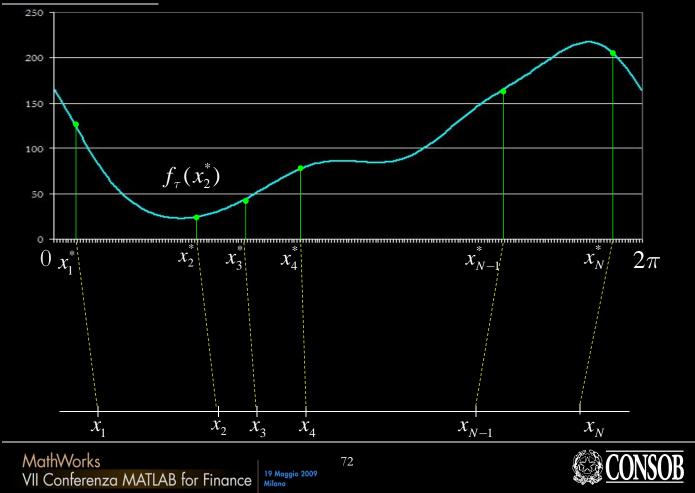


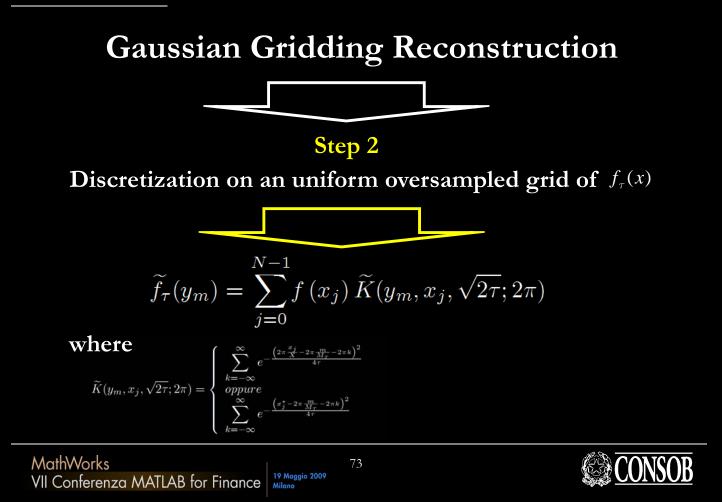


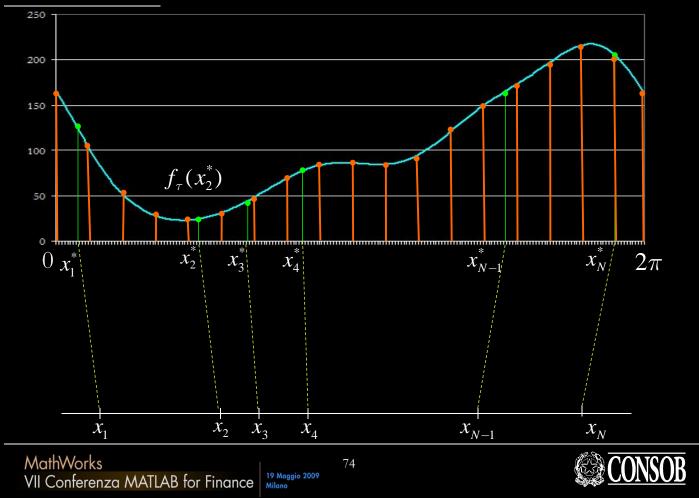




Non Uniform FFT







Gaussian Gridding Reconstruction

Step 3

Computation of the Fourier Coefficient of $f_{\tau}(x)$ discretised

$$F_{\tau}(n) = \lim_{M_{\tau} \to \infty} \frac{1}{M_{\tau}} \sum_{m=0}^{M_{\tau}-1} \widetilde{f}_{\tau} \left(m \frac{2\pi}{M_{\tau}} \right) e^{-im \frac{2\pi}{M_{\tau}}(n-1)}$$

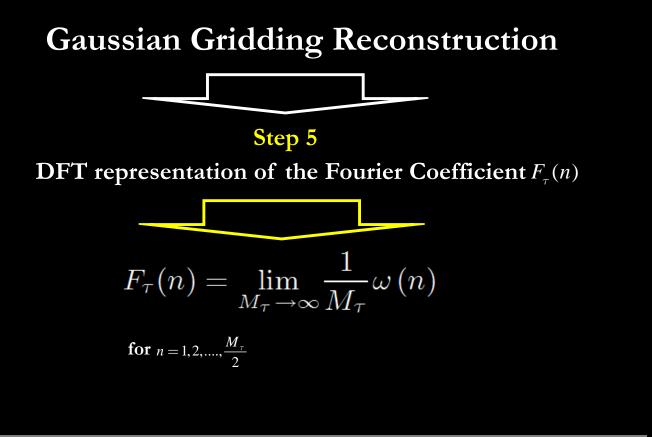
Non Uniform FFT

Gaussian Gridding Reconstruction

Step 4

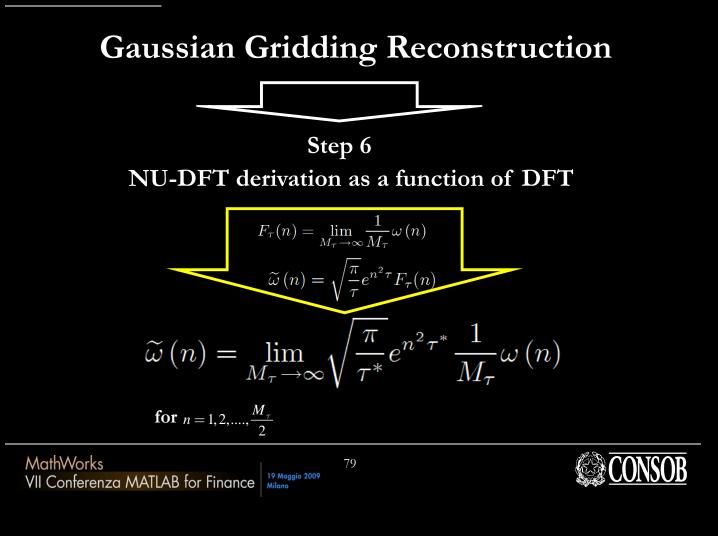
NU-DFT representation of the Fourier Coefficient $F_{\tau}(n)$

$$\widetilde{\omega}\left(n\right) = \sqrt{\frac{\pi}{\tau}} e^{n^{2}\tau} F_{\tau}(n)$$



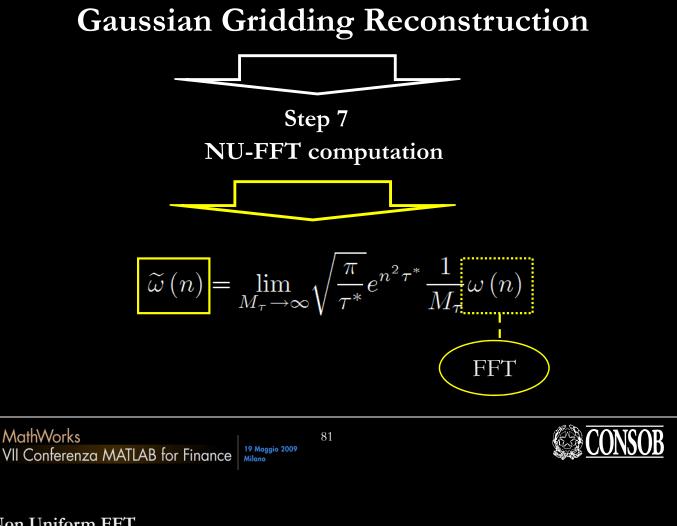
Gaussian Gridding Reconstruction

NU-DFT derivation as a function of DFT

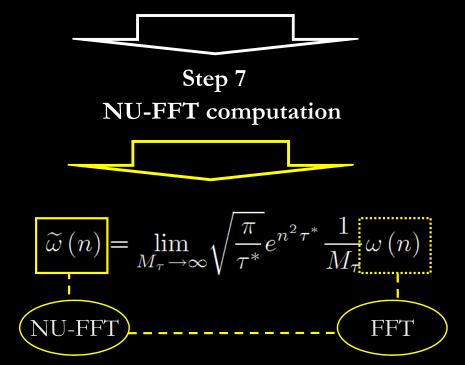


Gaussian Gridding Reconstruction

NU-FFT computation

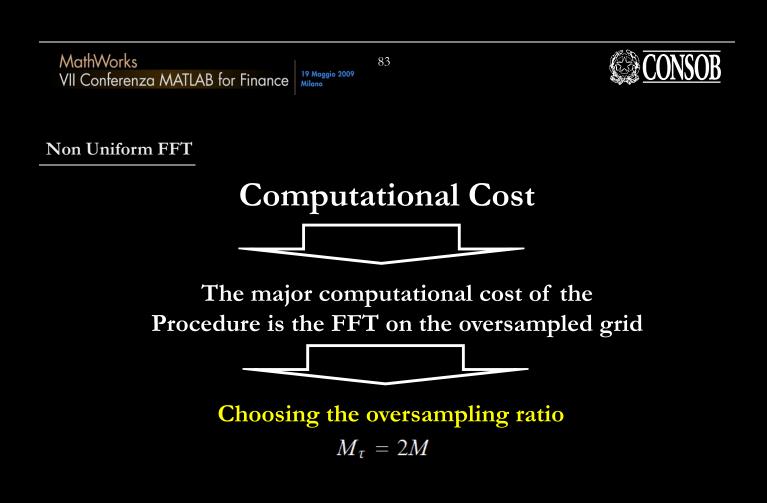


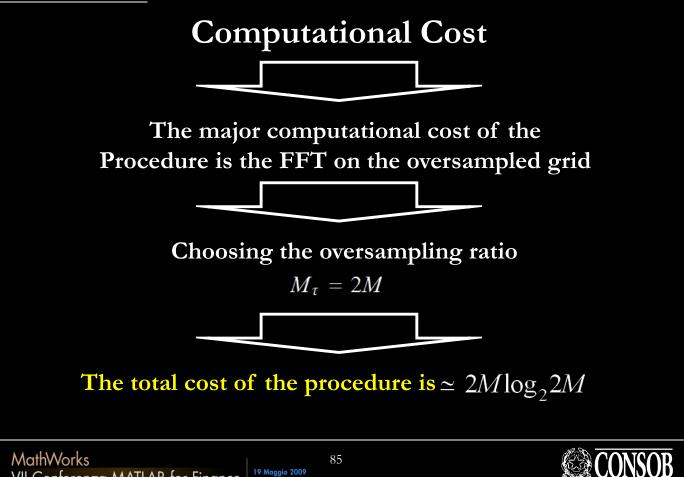
Gaussian Gridding Reconstruction



Computational Cost

The major computational cost of the Procedure is the FFT on the oversampled grid





Syllabus of the presentation

• Review of Derivative Pricing via DFT

- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids

• Fast Derivative Pricing

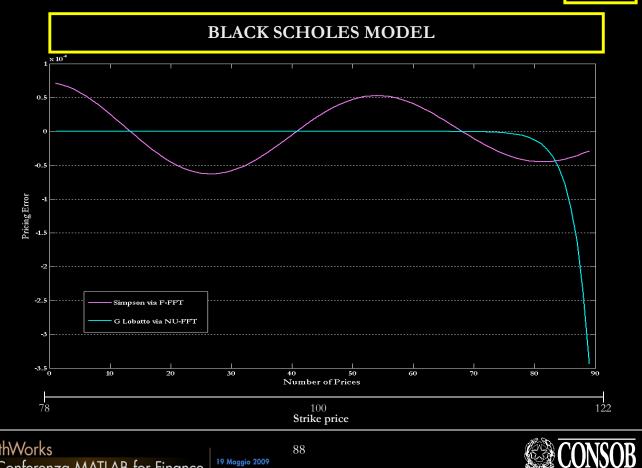
- Fractional FFT
- Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
- Fractional vs Non Uniform FFT: Empirical Analsysis
- Conclusions

ACCURACY

87 19 Maggio 2009 Milano

Empirical Analysis

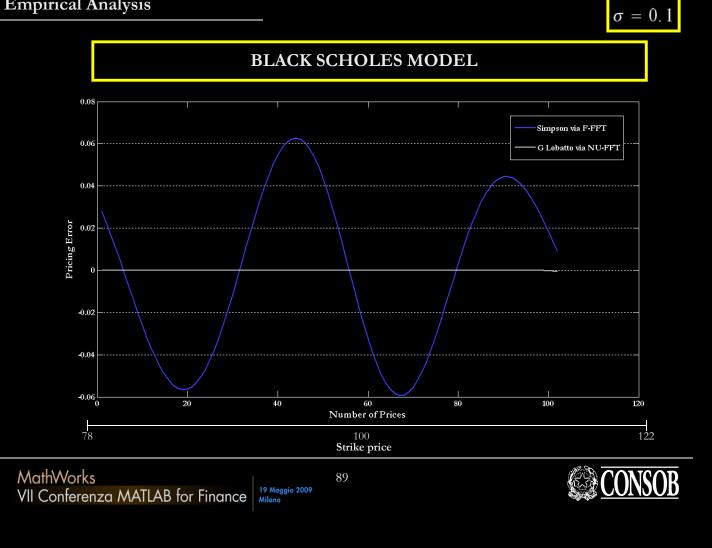
 $\sigma = 0.3$



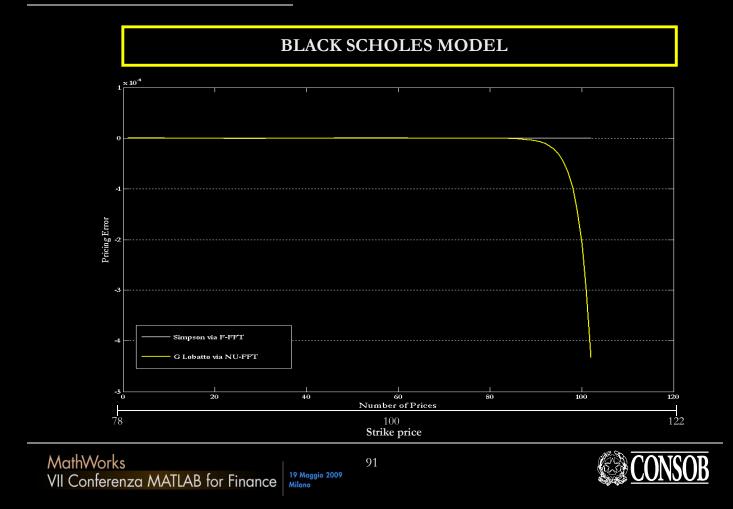
MathWorks VII Conferenza MATLAB for Finance

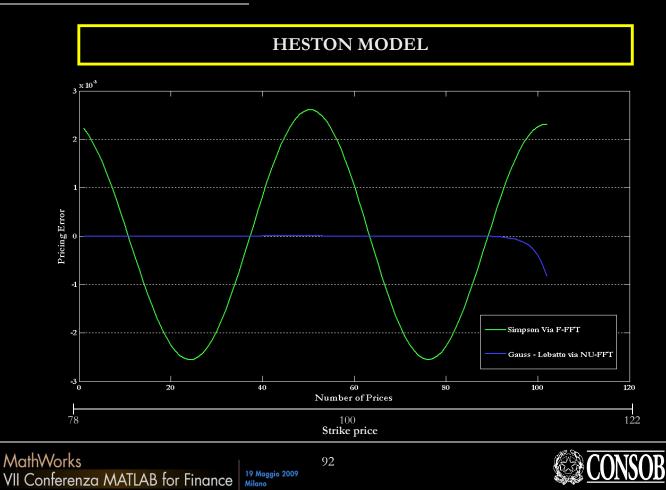
19 Maggio 2009

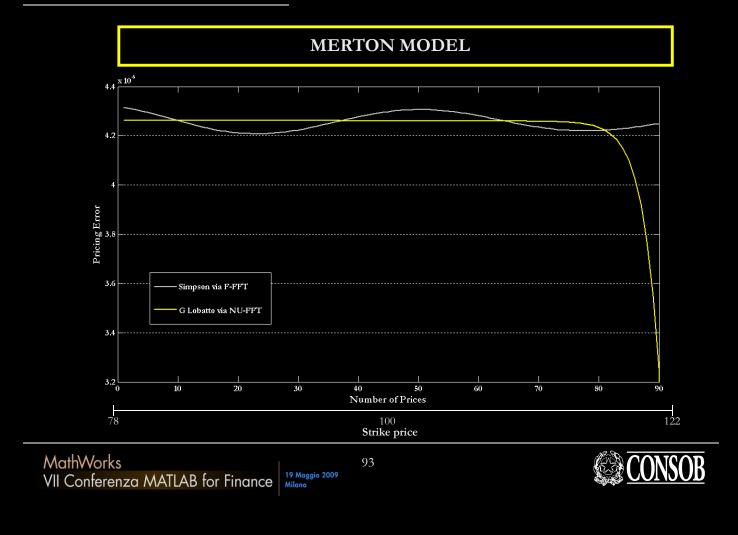
Milan



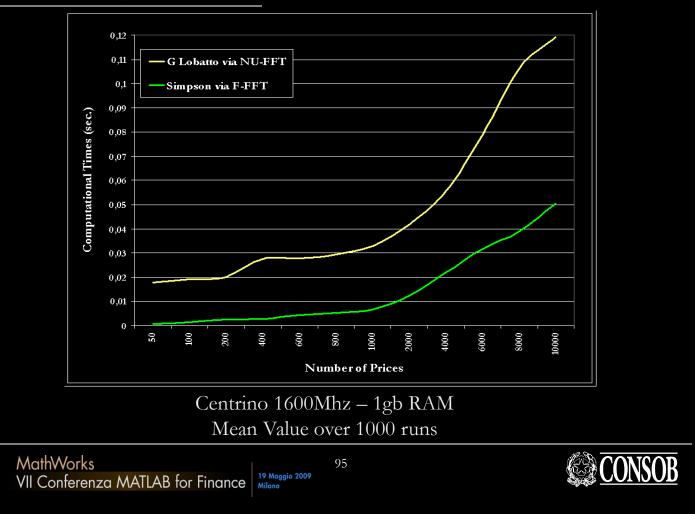
STABILITY



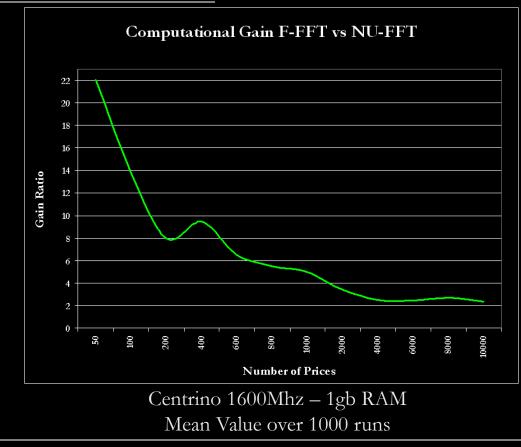




SPEED



The Computational Framework



At very low time scales, the differences are negligible

97

Syllabus of the presentation

Review of Derivative Pricing via DFT

- FT Pricing Formulae
- DFT Convergence to FT
- Convergence Theorems for Uniform Grids
- Convergence Theorems for Non Uniform Gaussian Grids
- Fast Derivative Pricing
 - Fractional FFT
 - Non Uniform FFT
 - •Gaussian Gridding: a matter of interpolation
 - Fractional vs Non Uniform FFT: Empirical Analysis
 - Conclusions

Use of Gaussian Grids

Conclusions

Indifference to Nyquist-Shannon Limit

F-FFT	YES
NU – FFT	YES

Indipendent Price Grids

F-FFT	YES
NU – FFT	YES

Conclusions

FFT's like - Accuracy

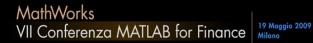
F-FFT	YES
NU – FFT	YES

Stability of Pricing

Conclusions

Speed of Pricing

F-FFT	YES
NU – FFT	YES



Conclusions

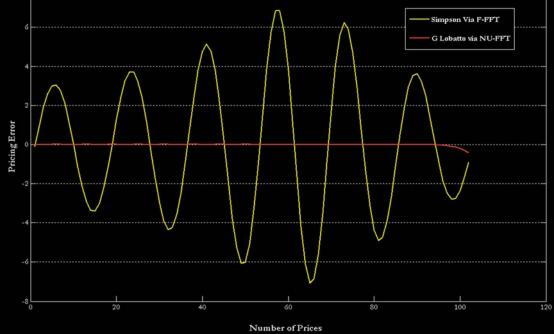
	F-FFT	NU – FFT
Gaussian Grids		
NS Limit		
Indipendent Grids		
Accuracy		
Stability		
Speed		

MathWorks VII Conferenza MATLAB for Finance

105

Numerical Methods in Semianalytical Derivatives Pricing

Efficient Solutions for Standard, Fractional and Non Uniform Discrete Transforms



e Nilano

