

Previsioni della Volatilità nei mercati finanziari attraverso approcci Garch Diffusivi

Indice

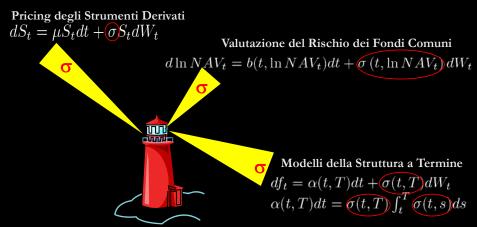
- Volatilità
 - Importanza e Relazione con altre Misure di Rischio
 - Variabile Aleatoria e Processo Stocastico

Indice

- Volatilità
- Limite dei Modelli Garch a Processi Diffusivi
- L'Intervallo Predittivo della Volatilità
- Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili
- Conclusioni

Volatilità: Importanza e Relazione con altre Misure di Rischio

La Volatilità è utilmente impiegata in numerosi problemi di finanza matematica, come ...



Il valore puntuale della Volatilità può essere calcolato con due metodi alternativi:

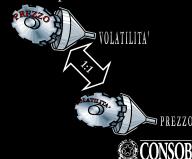
Metodo 1: Mis. di Prob. Soggettiva

o = deviazione standard delle osservazioni storiche

$$\sigma = \sqrt{\sum_{i=1}^{T} \frac{(X_i - \overline{X})^2}{T - 1}}$$

Metodo 2: Mis. di Prob. Neutr. al Rischio

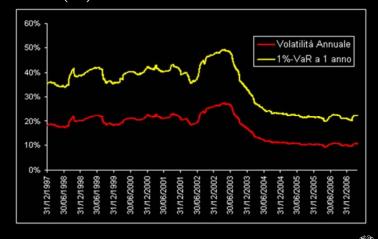
• = valore che eguaglia il prezzo Neutrale al Rischio al prezzo di Mercato



Indice

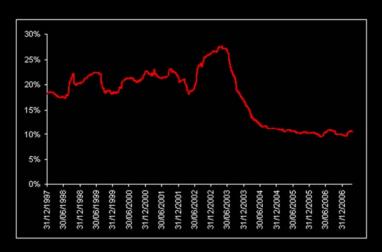
- Volatilità
 - Importanza e Relazione con altre Misure di Rischio
 - Variabile Aleatoria e Processo Stocastico

La Volatilità ha una stretta corrispondenza con ogni altra misura di rischio, come il Value-at-Risk (VaR) e l'Expected Shortfall (ES)

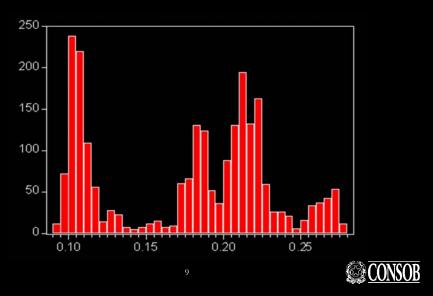


Volatilità: Variabile Aleatoria e Processo Stocastico

Plot della Serie Storica della Volatilità Annuale



Distribuzione di Probabilità Storica della Volatilità Annuale



Volatilità: Variabile Aleatoria e Processo Stocastico

Necessità di previsioni della Volatilità basate su modelli di Volatilità Stocastica

ANALISI DELLE SERIE STORICHE DELLA VOLATILITÀ

MODELLI GARCH

Indice

- Limite dei Modelli Garch a Processi Diffusivi
 - Intuizione
 - Il Teorema della Convergenza su R²
 - L'Enunciato
 - Le Condizioni
 - Il Limite Diffusivo dell'M-Garch(1,1)
 - L'Enunciato
 - · La Dimostrazione
 - Il Limite Diffusivo di altri Modelli Garch

LA SERIE STORICA DELLE VOLATILITÀ VIENE MODELLATA ATTRAVERSO

IL LIMITE DIFFUSIVO DI PROCESSI GARCH

da: EQUAZIONI ALLE DIFFERENZE STOCASTICHE

a: EQUAZIONI DIFFERENZIALI STOCASTICHE

via: RESTRIZIONE degli INTERVALLI TEMPORALI

1

Il Teorema della Convergenza su R²: L'Enunciato

La sequenza $\{X_t^h\}$, il cui spazio misurabile è $(\mathbb{R}^2,\mathbb{B}(\mathbb{R}^2))$, converge debolmente per h $\downarrow 0$ al processo $\{X_t\}$ che ha un'unica distribuzione ed è caratterizzato dalla seguente equazione differenziale stocastica:

$$dX_t = b(x, t)dt + \sigma(x, t)dW_{2,t}$$

dove $W_{2,t}$ è un moto Browniano standard bidimensionale, se le condizioni 1-4, riportate di seguito, sono soddisfatte.

Indice

• Limite dei Modelli Garch a Processi Diffusivi

- Intuizione
- Il Teorema della Convergenza su R²
 - L'Enunciato
 - Le Condizioni
- Il Limite Diffusivo dell'M-Garch(1,1)
 - L'Enunciato
 - · La Dimostrazione
- Il Limite Diffusivo di altri Modelli Garch

14

Il Teorema della Convergenza su R²: L'Enunciato

Più esplicitamente, la sequenza $\{X_t^h\}$, composta dalle sequenze $\{X_{1,t}^h\}$ e $\{X_{2,t}^h\}$, ciascuna delle quali misurabile sullo spazio $(\mathbb{R}^1,\mathbb{B}(\mathbb{R}^1))$, converge debolmente per h $\downarrow 0$ al seguente sistema di equazioni differenziali stocastiche

$$dX_{1,t} = b(x_1,t)dt + \sigma(x_1,t)dW_t$$

$$dX_{2,t} = b(x_2,t)dt + \sigma(x_2,t)dW_t^*$$

dove W_t e W_t^* sono due moti Browniani standard unidimensionali indipendenti tra loro, e $X_{1,t}$ e $X_{2,t}$ sono due processi indipendenti a valori in \mathbb{R}^1 , se le condizioni 1-4, riportate di seguito, sono soddisfatte.

Il Teorema della Convergenza su R²: L'Enunciato

Il processo $\{X_t\}$ ha una distribuzione indipendente dalla scelta di $\sigma(x,t)$ ed esso assume valori finiti su intervalli di tempo finiti, i.e. $\forall T>0$:

$$P(\sup_{0 < t < T} \|X_t\| < \infty) = 1$$

17

CONSOE

Il Teorema della Convergenza su R2: Le Condizioni

CONDIZIONE 1

Se esiste un $\delta > 0$ tale che:

$$\lim_{h\downarrow 0} \begin{pmatrix} c_{h,\delta}(x_1,t) \\ c_{h,\delta}(x_2,t) \end{pmatrix} = 0$$

allora esistono a(x,t) e b(x,t), misure continue che mappano rispettivamente da $\mathbb{R}^2 \times [0,\infty)$ nello spazio delle matrici di dimensione 2x2 semi-definite positive, e da $\mathbb{R}^2 \times [0,\infty)$ in \mathbb{R}^2 , tali che:

$$\begin{split} \lim_{h\downarrow 0} \begin{pmatrix} b_h(x_1,t)\\ b_h(x_2,t) \end{pmatrix} &= \begin{pmatrix} b(x_1,t)\\ b(x_2,t) \end{pmatrix} \\ \lim_{h\downarrow 0} \begin{pmatrix} a_h(x_1,t) & a_h((x_1,x_2),t)\\ a_h((x_2,x_1),t) & a_h(x_2,t) \end{pmatrix} &= \begin{pmatrix} a(x_1,t) & 0\\ 0 & a(x_2,t) \end{pmatrix} \end{split}$$

Indice

• Limite dei Modelli Garch a Processi Diffusivi

- Intuizione
- Il Teorema della Convergenza su R²
 - L'Enunciato
 - · Le Condizioni
- Il Limite Diffusivo dell'M-Garch(1,1)
 - L'Enunciato
 - · La Dimostrazione
- Il Limite Diffusivo di altri Modelli Garch

18

Il Teorema della Convergenza su R2: Le Condizioni

CONDIZIONE 2

Esiste $\sigma(x,t)$, una misura continua che mappa da $\mathbb{R}^2 \times [0,\infty)$ in \mathbb{R}^2 tale che $\forall x_1 \in \mathbb{R}^1, \forall x_2 \in \mathbb{R}^1$, vale:

$$\left(\begin{array}{cc}
\sigma(x_1,t) & 0 \\
0 & \sigma(x_2,t)
\end{array}\right) = \left(\begin{array}{cc}
\sqrt{a(x_1,t)} & 0 \\
0 & \sqrt{a(x_2,t)}
\end{array}\right)$$

Il Teorema della Convergenza su R2: Le Condizioni

CONDIZIONE 3

Per h $\downarrow 0$, X_0^h converge in distribuzione a una variabile aleatoria X_0 che possiede una misura di probabilità v_0 sullo spazio $(\mathbb{R}^2, \mathbb{B}(\mathbb{R}^2))$

CONDIZIONE 4

 v_0 , a(x,t) e b(x,t) specificano univocamente la distribuzione del processo $\{X_t\}$, caratterizzato da una distribuzione iniziale v_0 , da un momento secondo condizionato a(x,t), e da una momento primo condizionato b(x,t)

2

Il Limite Diffusivo dell'M-Garch(1,1): L'Enunciato

Dato il modello M-GARCH(1,1):

$$\begin{cases} X_k - X_{k-1} = \gamma \cdot (\eta - X_{k-1}) + \sigma_k \widetilde{Z}_k \\ e \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + \beta_1^{(k)} \ln Z_k^2 \\ o, \text{ equivalentemente:} \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + 2\beta_1^{(k)} \ln |Z_k| \end{cases}$$

 \widetilde{Z}_k e Z_k sono i.i.d. N(0,1)

Indice

• Limite dei Modelli Garch a Processi Diffusivi

- Intuizione
- Il Teorema della Convergenza su R²
 - L'Enunciato
 - · Le Condizioni
- Il Limite Diffusivo dell'M-Garch(1,1)
 - · L'Enunciato
 - · La Dimostrazione
- Il Limite Diffusivo di altri Modelli Garch

22

Il Limite Diffusivo dell'M-Garch(1,1): L'Enunciato

Dato il modello M-GARCH(1,1):

$$\begin{cases} X_k - X_{k-1} = \gamma \cdot (\eta - X_{k-1}) + \sigma_k \widetilde{Z}_k \\ c \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + \beta_1^{(k)} \ln Z_k^2 \\ o, \text{ equivalentemente:} \\ \ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + 2\beta_1^{(k)} \ln |Z_k| \end{cases}$$

 \widetilde{Z}_k e Z_k sono i.i.d. N(0,1)

il suo limite diffusivo è:

$$dX_t = q(\mu - X_t)dt + \sigma_t dW_t$$

$$d\ln \sigma_t^2 = \left(\beta_0 + 2\beta_1 E(\ln|Z_t|) + (\beta_1 - 1)\ln \sigma_t^2\right) dt + 2\beta_1 \sqrt{Var(\ln|Z_t|)} dW_t^*$$

 W_t e W_t^* sono N(0,1)

• Limite dei Modelli Garch a Processi Diffusivi

- Intuizione
- Il Teorema della Convergenza su R2
 - L'Enunciato
 - · Le Condizioni
- Il Limite Diffusivo dell'M-Garch(1,1)
 - L'Enunciato
 - · La Dimostrazione
- Il Limite Diffusivo di altri Modelli Garch

2

Il Limite Diffusivo dell'M-Garch(1,1): La Dimostrazione

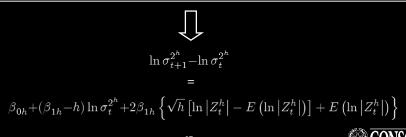
$\frac{\text{STEP 2}}{\text{LA COSTRUZIONE DEL PROCESSO}} \left\{ \ln \sigma_t^{2^h} \right\}$

Definizione della misura di probabilità P_h sullo spazio di Skorokhod D tale che:

$$P_h(\ln \sigma_0^{2^h} \in \Gamma) = v_0(\Gamma) \qquad \forall \Gamma \in \mathbb{B}(\mathbb{R}^1)$$

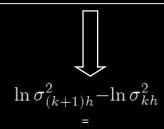
$$P_h(\ln \sigma_t^{2^h} = \ln \sigma_{hh}^2, \quad \forall \ kh < t < (k+1)h) = 1$$

$$P_h(\ln \sigma_{(k+1)h}^2 \in \Gamma | \widehat{\Im}_{kh}) = \Pi_{h,kh}(\ln \sigma_{kh}^2, \Gamma)$$
 q.c. sotto $P_h, \forall k \geq 0, \forall \Gamma \in \mathbb{B}(\mathbb{R}^1)$



STEP 1: IL *RE-SCALING* DEL PROCESSO

I k intervalli vengono divisi in 1/b sotto-intervalli, ciascuno di lunghezza b



$$\beta_{0h} + (\beta_{1h} - h) \ln \sigma_{kh}^2 + 2\beta_{1h} \left\{ \sqrt{h} \left[\ln |Z_k| - E \left(\ln |Z_k| \right) \right] + E \left(\ln |Z_k| \right) \right\}$$

*L'attenzione è rivolta all'equazione alle differenze per la volatilità. Per la convergenza della prima equazione cfr. Minenna 2001

26

Il Limite Diffusivo dell'M-Garch(1,1): La Dimostrazione

STEP 3:

VERIFICA DELLA CONDIZIONE 3 DEL TEOREMA DELLA CONVERGENZA

Individuazione dei valori di β_{0h} e di β_{1h} che garantiscono la convergenza dei momenti condizionati

$$\beta_{0h} := \beta_0 \cdot h$$

$$\beta_{1h} := \beta_1 \cdot h$$

$$\lim_{h \downarrow 0} h \left(\ln \widehat{\sigma^2}, t \right) = 0$$

$$\lim_{h \downarrow 0} h \left(\ln \widehat{\sigma^2}, t \right) = \beta_0 + 2\beta_1 E \left(\ln |Z_t| \right) + (\beta_1 - 1) \ln \sigma_t^2$$

$$\lim_{h \downarrow 0} a_h \left(\ln \widehat{\sigma^2}, t \right) = 4\beta_1^2 Var \left(\ln |Z_t| \right)$$

STEP 4: **VERIFICA DELLE CONDIZIONI 2, 3 E 4** DEL TEOREMA DELLA CONVERGENZA

• La Condizione 2 è verificata per ogni $\sigma > 0$, i.e.:

$$\sigma\left(\ln\widehat{\sigma^2},t\right) = 2\beta_1 \sqrt{Var(|Z_t|)}$$

- La Condizione 3 è evidentemente soddisfatta per costruzione dal processo $\left\{\ln\sigma_t^{2^h}\right\}$
- Conseguentemente, anche la Condizione 4 è verificata.

Q.E.D.

Limite dei Modelli Garch a Processi Diffusivi: Il Limite Diffusivo di altri Modelli Garch

Procedura Analoga

Dato il modello E-GARCH(1,1):

$$\ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + \beta_1^{(k)} \ln \sigma_k^2 + \beta_2^{(k)} (|Z_k| + \vartheta Z_k)$$

il suo limite diffusivo è:

$$\begin{split} d\ln\sigma_t^2 &= \left[\alpha_0 + \frac{2}{\sqrt{2\pi}}\left(\alpha_4 + \frac{\alpha_5}{2}\right) - \alpha_4 - \alpha_5 - \alpha_1 - 1 + (\alpha_1 - 1)\ln\sigma_t^2\right]dt \\ &- \frac{\alpha_5}{2}dW_t + \left|\alpha_4 + \frac{\alpha_5}{2}\right|\sqrt{\frac{\pi - 2}{\pi}}dW_t^* \end{split}$$

• Limite dei Modelli Garch a Processi Diffusivi

- Intuizione
- Il Teorema della Convergenza su R²
 - L'Enunciato
 - Le Condizioni
- Il Limite Diffusivo dell'M-Garch(1,1)
 - · L'Enunciato
 - · La Dimostrazione
- Il Limite Diffusivo di altri Modelli Garch

Limite dei Modelli Garch a Processi Diffusivi: Il Limite Diffusivo di altri Modelli Garch

Procedura Analoga

Dato il modello E-GARCH(1,1):

Dato il modello L-GARCH(1,1):

$$\ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + \beta_1^{(k)} \ln \sigma_k^2 + \beta_2^{(k)} (|Z_k| + \vartheta Z_k)$$

$$\sigma_{k+1}^2 - \sigma_k^2 = \omega + \sigma_k^2 (\beta + \varpi Z_k^2 - 1)$$

$$\sigma_{k+1}^z - \sigma_k^z = \omega + \sigma_k^z (\beta + \varpi Z_k^z)$$

il suo limite diffusivo è:

il suo limite diffusivo è:

$$d \ln \sigma_t^2 = \left[\alpha_0 + \frac{2}{\sqrt{2\pi}} \left(\alpha_4 + \frac{\alpha_5}{2} \right) - \alpha_4 - \alpha_5 - \alpha_1 - 1 + (\alpha_1 - 1) \ln \sigma_t^2 \right] dt$$

$$- \frac{\alpha_5}{2} dW_t + \left| \alpha_4 + \frac{\alpha_5}{2} \right| \sqrt{\frac{\pi - 2}{\pi}} dW_t^*$$

$$d\sigma_t^2 = [\omega + \vartheta \sigma_t^2] dt + \sqrt{2} \overline{\omega} \sigma_t^2 dW_t$$

• L'Intervallo Predittivo della Volatilità

- Le Proprietà dell'Equazione Differenziale Stocastica per l'M-Garch(1,1)
- La Stima dei Parametri dell'Equazione Differenziale Stocastica
- La Determinazione dell'Intervallo

33

Partendo dal Limite Diffusivo del Processo GARCH è possibile stabilire un Intervallo di Previsione per σ_t

34

Indice

• L'Intervallo Predittivo della Volatilità

- Le Proprietà dell'Equazione Differenziale Stocastica per l'M-Garch(1,1)
- La Stima dei Parametri dell'Equazione Differenziale Stocastica
- La Determinazione dell'Intervallo

L'Intervallo Predittivo per la Volatilità: Le Proprietà dell'Equazione Differenziale Stocastica per l'M-Garch(1,1)

$$d \ln \sigma_t^2 = \left(\beta_0 + 2\beta_1 E(\ln|Z_t|) + (\beta_1 - 1) \ln \sigma_t^2\right) dt + 2\beta_1 \sqrt{Var(\ln|Z_t|)} dW_t^*$$

$$\ln \sigma_t^2 \sim N \left[\left(\ln \sigma_{t-1}^2 + \frac{\beta_0 + 2\beta_1 E(\ln|Z_t|)}{(\beta_1 - 1)} \right) e^{(\beta_1 - 1)} - \frac{\beta_0 + 2\beta_1 E(\ln|Z_t|)}{(\beta_1 - 1)}; \sqrt{\frac{\left(2|\beta_1|\sqrt{Var(\ln|Z_t|)}\right)^2}{2(\beta_1 - 1)} \left(e^{2(\beta_1 - 1)} - 1\right)} \right] + \frac{\beta_0 + 2\beta_1 E(\ln|Z_t|)}{(\beta_1 - 1)} + \frac{\beta_0 + \beta_1 E(\ln|Z_t$$

• L'Intervallo Predittivo della Volatilità

- Le Proprietà dell'Equazione Differenziale Stocastica per l'M-Garch(1,1)
- La Stima dei Parametri dell'Equazione Differenziale Stocastica
- La Determinazione dell'Intervallo

31

L'Intervallo Predittivo per la Volatilità: La Stima dei Parametri dell'Equazione Differenziale Stocastica

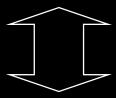
Matching dei Primi due Momenti Condizionati

$$\ln \sigma_{k+1}^2 - \ln \sigma_k^2$$

$$\left(e^{(\beta_1-1)}-1\right)\left(\frac{\beta_0+2\beta_1E(\ln|Z_t|)}{(\beta_1-1)}\right)+\left(e^{(\beta_1-1)}-1\right)\ln\sigma_k^2+2\left(e^{(\beta_1-1)}-1\right)\ln|Z_k|$$

La relazione tra l'Equazione alle Differenze Stocastica e l'Equazione Differenziale Stocastica

$$\ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \beta_0^{(k)} + (\beta_1^{(k)} - 1) \ln \sigma_k^2 + 2\beta_1^{(k)} \ln |Z_k|$$



$$d \ln \sigma_t^2 = (\beta_0 + 2\beta_1 E(\ln |Z_t|) + (\beta_1 - 1) \ln \sigma_t^2) dt + 2\beta_1 \sqrt{Var(\ln |Z_t|)} dW_t^*$$

38

L'Intervallo Predittivo per la Volatilità: La Stima dei Parametri dell'Equazione Differenziale Stocastica

Il Metodo della Massima Verosimiglianza

$$\ln \sigma_{k+1}^2 - \ln \sigma_k^2 = \widehat{a} + \widehat{b} \ln \sigma_k^2 + e_k$$

$$eta_0 = f_1\left(\widehat{a},\widehat{b}
ight)$$

$${eta}_1=f_2\left(\widehat{a},\widehat{b}
ight)$$

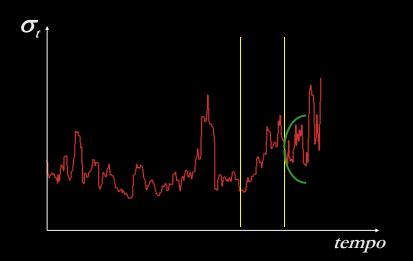
$$2\beta_1 \sqrt{Var(\ln |Z_t|)} = f_3\left(\widehat{a}, \widehat{b}, e_k\right)$$

• L'Intervallo Predittivo della Volatilità

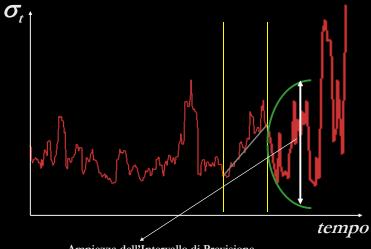
- Le Proprietà dell'Equazione Differenziale Stocastica per l'M-Garch(1,1)
- La Stima dei Parametri dell'Equazione Differenziale Stocastica
- · La Determinazione dell'Intervallo

$$P \begin{pmatrix} -z_{\frac{\alpha}{2}} \sqrt{\frac{\left(2|\beta_{1}|\sqrt{Var(\ln|Z_{t}|)}\right)^{2}}{2(\beta_{1}-1)}} \left(e^{2(\beta_{1}-1)}-1\right) + \left(\ln\sigma_{t-1}^{2} + \frac{\beta_{0}+2\beta_{1}E(\ln|Z_{t}|)}{(\beta_{1}-1)}\right) e^{(\beta_{1}-1)} - \frac{\beta_{0}+2\beta_{1}E(\ln|Z_{t}|)}{(\beta_{1}-1)} \\ & \leq \ln\sigma_{t}^{2} \leq \\ -z_{\frac{\alpha}{2}} \sqrt{\frac{\left(2|\beta_{1}|\sqrt{Var(\ln|Z_{t}|)}\right)^{2}}{2(\beta_{1}-1)}} \left(e^{2(\beta_{1}-1)}-1\right) + \left(\ln\sigma_{t-1}^{2} + \frac{\beta_{0}+2\beta_{1}E(\ln|Z_{t}|)}{(\beta_{1}-1)}\right) e^{(\beta_{1}-1)} - \frac{\beta_{0}+2\beta_{1}E(\ln|Z_{t}|)}{(\beta_{1}-1)} \end{pmatrix}$$

L'Intervallo Predittivo per la Volatilità: La Determinazione dell'Intervallo



L'Intervallo Predittivo per la Volatilità: La Determinazione dell'Intervallo



Ampiezza dell'Intervallo di Previsione

• Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili

- Concetti Preliminari sui Rischi nei Fondi
- Elementi Definitori sui Fondi Flessibili
- La Regolamentazione di Trasparenza in Italia
- · Misure di Rischio basate sulla Volatilità
- Realizzazione del Rischio e Regolamentazione di Trasparenza
- Analisi Empirica
 - · Descrizione della Metodologia
 - Risultati

45

Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: Concetti Preliminari sui Rischi nei Fondi

Ogni Asset incorpora molteplici fattori di rischio...

CONSOB

dove:

- F_t = valore del Fondo al tempo t
- $A_{j,t}$ = valore del j-mo Asset al tempo t, (j=1, 2,...,J)

•
$$\sum_{j=1}^{J} x_{j,t} = 1$$

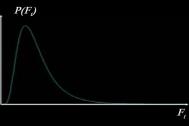
40

Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: Concetti Preliminari sui Rischi nei Fondi

... il Valore del Fondo sintetizza tutti rischi incorporati nei vari Asset ...

$$F_t = x_{1,t} \xrightarrow[A_{1,t}]{} + x_{2,t} \xrightarrow[A_{2,t}]{} + \dots$$

... quindi F_t è una Variabile Aleatoria



La Serie Storica di F_t è un Processo Stocastico

Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: Concetti Preliminari sui Rischi nei Fondi

Il valore della quota del Fondo

$$NAV_{t} = \frac{\sum_{j=1}^{J} x_{j,t} A_{j,t}}{S_{t}^{P}}$$

 $S_t^P = \text{numero delle quote in}$ circolazione al tempo t

La Serie Storica di NAV_t è un Processo Stocastico

tempo

<u>CONSOB</u>

Il valore della quota del Fondo

$$NAV_t = \frac{\sum\limits_{j=1}^{J} x_{j,t} A_{j,t}}{S_t^P}$$

 S_t^P = numero delle quote in circolazione al tempo t

3

Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: Concetti Preliminari sui Rischi nei Fondi

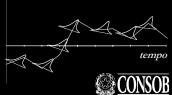
Il rendimento periodale del Fondo

$$r_t^{NAV} = \frac{NAV_t - NAV_s}{NAV_s}$$

o, equivalentemente, per $t \downarrow s$:

$$r_t^{NAV} = \ln\left(\frac{NAV_t}{NAV_s}\right)$$

La Serie Storica di r_t^{NAV} è un $Processo\ Stocastico$



MISURAZIONE DEL RISCHIO DEI FONDI

53

Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: Concetti Preliminari sui Rischi nei Fondi

Ma, nel caso dei fondi

$$\left. \frac{\partial \sigma_{new}^2}{\partial x_{A^{new}}} \right|_{x_{A^{new}}=0} = -2\sigma_{old}^2 + 2cov(r_{old}, r_{A^{new}})$$

è semplicistico

in quanto:

$$r_t^{PF} \neq r_t^{NAV}$$

Il tradizionale approccio

 $E\left(r_{t}^{PF}\right) = \sum_{j=1}^{J} x_{j,s} E\left(r_{A_{j,s}}\right)$

media-varianza:

 $\sigma^{2}\left(r_{t}^{PF}\right) = \sum_{j=1}^{J} x_{j,s}^{2} \sigma^{2}\left(r_{A_{j,s}}\right) + 2\sum_{j \neq l} x_{j,s} x_{l,s} \operatorname{cov}(r_{A_{j,s}}, r_{A_{l,s}})$

MISURAZIONE DEL RISCHIO DEL PORTAFOGLIO attraverso:

$$\left. \frac{\partial \sigma_{new}^2}{\partial x_{A^{new}}} \right|_{x_{A^{new}}=0} = -2\sigma_{old}^2 + 2cov(r_{old}, r_{A^{new}})$$

Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: Concetti Preliminari sui Rischi nei Fondi

Dimostrazione

$$r_{t}^{PF} \stackrel{?}{=} r_{t}^{NAV}$$

$$r_{t}^{NAV} = r_{t}^{NAV}$$

$$= \frac{NAV_{t} - NAV_{s}}{NAV_{s}}$$

Dimostrazione

$$r_t^{PF} = r_t^{NAV}$$

$$r_t^{PF}$$
=

$$\sum_{j=1}^{J} x_{j,s} r_{A_{j,t}}$$

$$= \frac{NAV_t - NAV_s}{NAV_s}$$

$$= =$$

$$\sum_{j=1}^{J} x_{j,s} \left(\frac{A_{j,t} - A_{j,s}}{A_{j,s}} \right) \qquad \qquad \underbrace{\sum_{j=1}^{J} x_{j,s} A_{j,t} - \sum_{j=1}^{J} x_{j,s} A_{j,s}}_{\sum_{j=1}^{J} x_{j,s} A_{j,s}} \right)$$

© CONSOB

Indice

• Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili

- Concetti Preliminari sui Rischi nei Fondi
- Elementi Definitori sui Fondi Flessibili
- La Regolamentazione di Trasparenza in Italia
- · Misure di Rischio basate sulla Volatilità
- Realizzazione del Rischio e Regolamentazione di Trasparenza
- Analisi Empirica
 - · Descrizione della Metodologia
 - Risultati

Il tradizionale approccio

$$E\left(r_{t}^{PF}\right) = \sum_{j=1}^{J} x_{j,s} E\left(r_{A_{j,s}}\right)$$

media-varianza:

$$\sigma^{2}\left(r_{t}^{PF}\right) = \sum_{j=1}^{J} x_{j,s}^{2} \sigma^{2}\left(r_{A_{j,s}}\right) + 2\sum_{j \neq l} x_{j,s} x_{l,s} \operatorname{cov}(r_{A_{j,s}}, r_{A_{l,s}})$$

MISURAZIONE DEL RISCHIO DEI FONDI

58

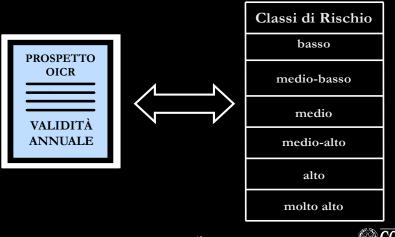
Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: Elementi Definitori sui Fondi Flessibili

FONDI FLESSIBILI

Libertà di investimento in ogni mercato e in ogni strumento finanziario

Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: La Regolamentazione di Trasparenza in Italia

Ogni fondo deve dichiarare il proprio grado di rischio in termini descrittivi, scegliendo tra sei opzioni ordinate in modo crescente:



Indice

• Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili

- Concetti Preliminari sui Rischi nei Fondi
- Elementi Definitori sui Fondi Flessibili
- La Regolamentazione di Trasparenza in Italia
- · Misure di Rischio basate sulla Volatilità
- Realizzazione del Rischio e Regolamentazione di Trasparenza
- Analisi Empirica
 - · Descrizione della Metodologia
 - Risultati

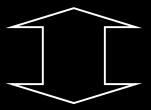
62

Indice

• Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili

- Concetti Preliminari sui Rischi nei Fondi
- Elementi Definitori sui Fondi Flessibili
- La Regolamentazione di Trasparenza in Italia
- · Misure di Rischio basate sulla Volatilità
- Realizzazione del Rischio e Regolamentazione di Trasparenza
- Analisi Empirica
 - · Descrizione della Metodologia
 - Risultati

Ipotesi Fondamentale



La valutazione quantitativa del rischio

si basa su

MISURE DI VOLATILITÀ

65

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 1: Definizione di Intervalli di Perdita del Fondo

Cos'è la PERDITA in un investimento finanziario?

PRINCIPIO DI NEUTRALITA' AL RISCHIO

PERDITA \in (- 100%, $\overline{r^{rf}}$]

dove: r^{rf} = media della Distribuzione di Probabilità del tasso *risk-free*

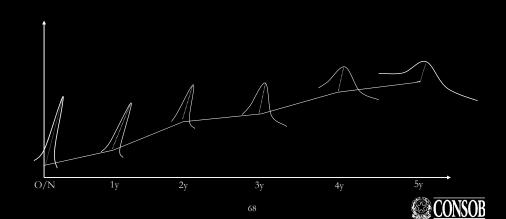
Mapping delle Classi di Rischio Qualitative a corrispondenti Intervalli di Volatilità

66

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 1: Definizione di Intervalli di Perdita del Fondo

Date la curva dei tassi risk-free e la relativa volatility surface ...



Step 1: Definizione di Intervalli di Perdita del Fondo

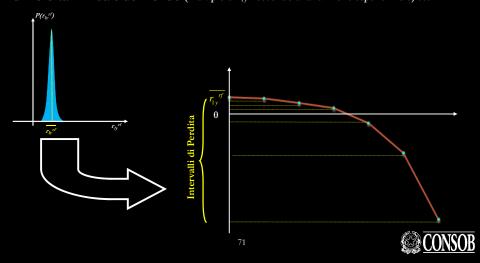
... si seleziona la Distribuzione di Probabilità del tasso risk-free a un anno ...



Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

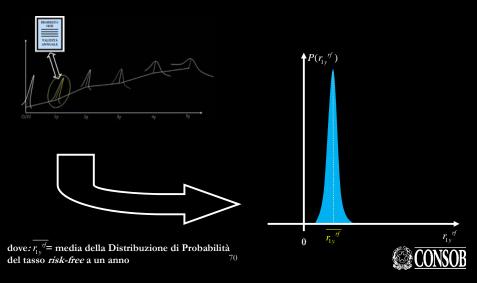
Step 1: Definizione di Intervalli di Perdita del Fondo

... e ad ogni Classe di Rischio Qualitativa si associa il corrispondente Intervallo di Perdita Annuale del Fondo (multiplo di $r_{1y}^{\ \ \ \ \ \ }$ secondo una funzione esponenziale) ...



Step 1: Definizione di Intervalli di Perdita del Fondo

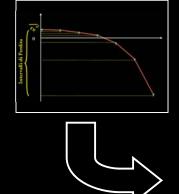
... si seleziona la Distribuzione di Probabilità del tasso risk-free a un anno ...



Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 1: Definizione di Intervalli di Perdita del Fondo

... ottenendo ...



Classi di Rischio	Intervalli di L_{min}	Perdita L_{max}
basso	$_0\!L_{1\!,min}$	$_{\it 0}L_{\it 1,max}$
medio-basso	$_{\it 0}L_{\it 2,min}$	$_0L_{2,max}$
medio	$_{ heta}\!L_{ extit{3,min}}$	$_{ heta}\!L_{ extit{3,max}}$
medio-alto	$_{\it 0}L_{\it 4,min}$	$_{\it 0}L_{\it 4,max}$
alto	$_{\it 0}L_{\it 5,min}$	$_{ heta}L_{ extit{5,max}}$
molto alto	$_0\!L_{6,min}$	$_{ heta}\!L_{ heta,max}$

Step 2: Mapping degli Intervalli di Perdita del Fondo ai corrispondenti Intervalli di Volatilità del Fondo

Classi di Rischio	Intervalli di Perdita	
Classi di Rischio	L_{min}	L_{max}
basso	$_0L_{1,min}$	$_0L_{1,max}$
medio-basso	$_0L_{2,min}$	$_0L_{2,max}$
medio	$_{0}L_{3,min}$	$_{ heta}L_{ extit{3,max}}$
medio-alto	$_0L_{4,min}$	$_{0}L_{4,max}$
alto	$_0L_{5,min}$	$_0L_{5,max}$
molto alto	$_{0}L_{6min}$	$_{0}L_{6max}$

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 2: Mapping degli Intervalli di Perdita del Fondo ai corrispondenti Intervalli di Volatilità del Fondo

	Intervalli di Perdita	
Classi di Rischio	L_{min}	L_{max}
basso	$_{ heta}L_{ extit{1,min}}$	$_{0}L_{1,max}$
medio-basso	$_0L_{2,min}$	$_0L_{2,max}$
medio	$_{ heta}L_{3,min}$	$_{ heta}L_{ extcolored}$
medio-alto	$_0L_{4,min}$	$_0L_{4,max}$
alto	$_{ heta}L_{5,min}$	$_{ heta}L_{5,max}$
molto alto	$_0L_{6,min}$	$_0L_{6,max}$

Classi di Rischio	Intervalli di Volatilità $oldsymbol{\sigma}_{min} oldsymbol{\sigma}_{max}$	
basso	$_{\it 0}\sigma_{\it 1,min}$	$_{ heta}\sigma_{l,max}$
medio-basso	$_{\it 0}\sigma_{\it 2,min}$	$_{ heta}\sigma_{\! extbf{2,max}}$
medio	0 σ 3.min	₀ σ _{3.max}
medio-alto	$_{0}\sigma_{4,min}$	$_{0}\sigma_{4,max}$
alto	0 ^σ 5,min	0 05, тах
molto alto	0 σ _{6,min}	₀ σ _{6,max}

*Il pedice θ che precede la volatilità indica che si tratta dell'intervallo iniziale, i.e. ante calibrazione

Step 2: Mapping degli Intervalli di Perdita del Fondo ai corrispondenti Intervalli di Volatilità del Fondo

Classi di Rischio	Intervalli di l L_{min}	Perdita L_{max}
basso	$_{0}L_{1,min}$	$_{0}L_{1,max}$
medio-basso	$_{\it 0}L_{\it 2,min}$	$_{0}L_{2,max}$
medio	$_{0}L_{3,min}$	$_{\theta}L_{3,max}$
medio-alto	$_0L_{4,min}$	$_{0}L_{4,max}$
alto	$_{ heta}L_{5,min}$	$_0L_{5,max}$
molto alto	$_{ heta}L_{ heta,min}$	$_{0}L_{6,max}$

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 3: Calibrazione degli Intervalli

REQUISITI

- Capacità di riflettere in modo robusto e significativo il grado di rischio "tipico" della corrispondente Classe Qualitativa
- Stabilità nel tempo anche a fronte di significative variazioni della curva dei tassi

Step 3: Calibrazione degli Intervalli

REQUISITI

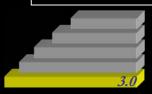
- Capacità di riflettere in modo robusto e significativo il grado di rischio "tipico" della corrispondente Classe Qualitativa
- Stabilità nel tempo anche a fronte di significative variazioni della curva dei tassi

STRUMENTI

- Modelli GARCH Diffusivi
- Tecniche di Programmazione Stocastica Non-Lineare

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 3: Calibrazione degli Intervalli



Selezione di un Intervallo iniziale di Volatilità

Classi di Rischio	Intervalli di Volatilità	
Classi di Rischio	$\sigma_{\!\scriptscriptstyle min}$	$\sigma_{\!\scriptscriptstyle max}$
basso	$_{ heta}oldsymbol{\sigma}_{ extit{ extit{1,min}}}$	$_{ heta}\sigma_{ extit{1,max}}$
medio-basso	$_{ heta}oldsymbol{\sigma}_{2,min}$	$_{ heta}\sigma_{2,max}$
medio	$_{ heta}\sigma_{\!\scriptscriptstyle oldsymbol{\mathcal{J}},min}$	$_{\it 0}\sigma_{\it 3,max}$
medio-alto	$_{ heta}\sigma_{4,min}$	$_{ heta}\sigma_{4,max}$
alto	$_{ heta}\sigma_{5,min}$	$_{ heta}\sigma_{\!\scriptscriptstyle 5,max}$
molto alto	ο σ	σ_{c}

REQUISITI

- Capacità di riflettere in modo robusto e significativo il grado di rischio "tipico" della corrispondente Classe Qualitativa
- Stabilità nel tempo anche a fronte di significative variazioni della curva dei tassi

STRUMENTI

- Modelli GARCH Diffusivi
- Tecniche di Programmazione Stocastica Non-Lineare

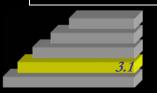
Step 3: Calibrazione degli Intervalli

Intervento di fine-tuning sugli Intervalli di Volatilità

78

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

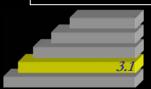
Step 3: Calibrazione degli Intervalli



Simulazione dell'andamento del Fondo

Equazione Differenziale Stocastica del NAV

Step 3: Calibrazione degli Intervalli



Simulazione dell'andamento del Fondo

E.D.S. NAV

Quali Parametri?

81

E.D.S. NAV

Step 3: Calibrazione degli Intervalli

Simulazione dell'andamento del Fondo

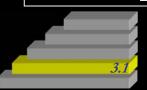
Quali Parametri?

Il Drift

82

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 3: Calibrazione degli Intervalli

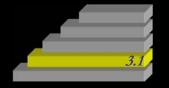


Simulazione dell'andamento del Fondo

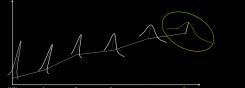
Principio della Neutralità al Rischio

Drift =
$$r^{rf}$$

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

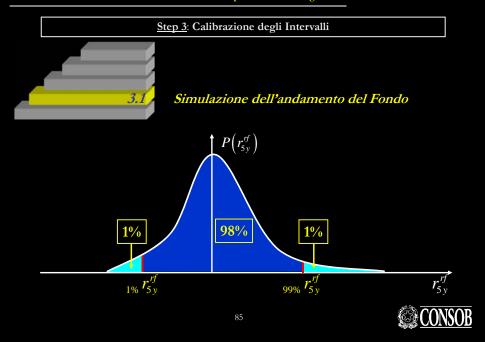


Simulazione dell'andamento del Fondo



Robustezza degli Intervalli di Volatilità

$$\mathbf{Drift} = r_{5y}^{rf}$$



Simulazione dell'andamento del Fondo Distribuzione **Uniforme Continua** $_{1\%} r_{5y}^{rf}$

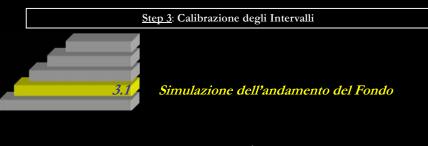
Step 3: Calibrazione degli Intervalli

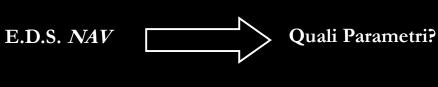
Distribuzione

Triangolare Simmetrica

Step 3: Calibrazione degli Intervalli

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza



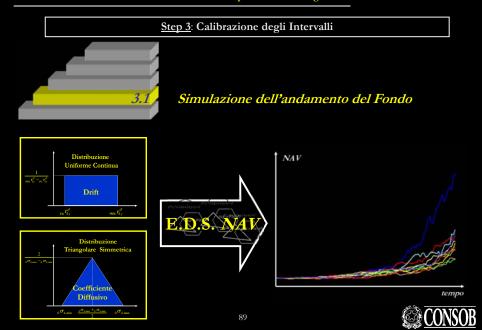


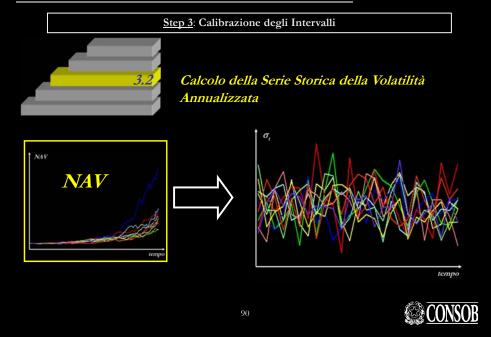
Il Coefficiente Diffusivo

Simulazione dell'andamento del Fondo Intervallo di Volatilità Iniziale: $[{}_{\theta}\sigma_{4,min} \quad {}_{\theta}\sigma_{4,max}]$ $_{0}\sigma_{4,\mathrm{max}}$ $-_{0}\sigma_{4,\mathrm{m}}$ Rappresentatività degli

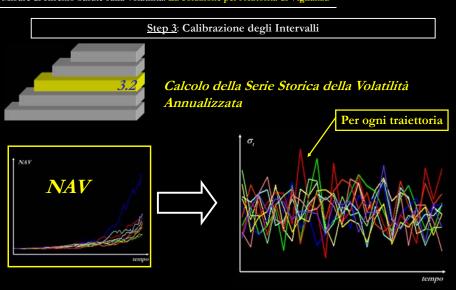
Intervalli di Volatilità

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

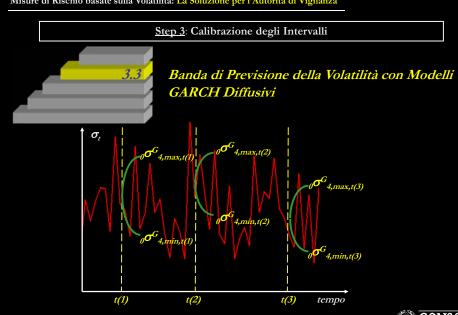


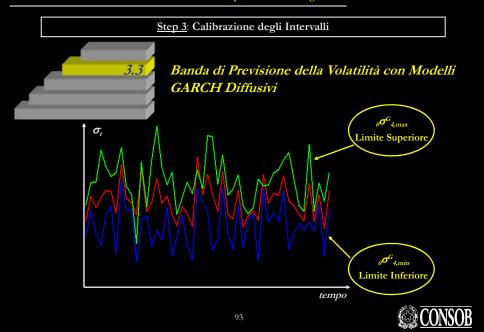


Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

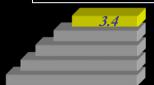


Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

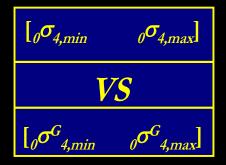




Step 3: Calibrazione degli Intervalli

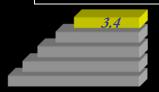


Validazione dell'Intervallo di Volatilità Iniziale



Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

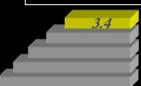


Validazione dell'Intervallo di Volatilità Iniziale

Calcolo del numero di osservazioni esterne alla Banda

Traiettoria	\mathbf{n}° oss. $\mathbf{ni} \in \begin{bmatrix} {}_{\theta} \boldsymbol{\sigma}^{G}_{4,min} & {}_{\theta} \boldsymbol{\sigma}^{G}_{4,max} \end{bmatrix}$	n° oss. $ni < {}_{\theta} \sigma^{G}_{4,min}$	n° oss.ni > $_{\theta}\sigma^{G}_{4,max}$
1			
2			
n			
	Tot. $\in [{}_{\theta}\boldsymbol{\sigma}^{G}_{4,min} \ {}_{\theta}\boldsymbol{\sigma}^{G}_{4,max}]$	Tot. $< {}_{\theta} \sigma^{G}_{4,min}$	Tot. $> {}_{\theta}\sigma^{G}_{4,max}$

Step 3: Calibrazione degli Intervalli



Validazione dell'Intervallo di Volatilità Iniziale Numero di osservazioni esterne alla Banda in un anno

$$\Delta = \frac{[\text{Tot.} > {}_{\theta}\sigma^{G}_{4,max}] + [\text{Tot.} < {}_{\theta}\sigma^{G}_{4,min}]}{n*250}$$

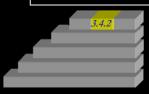
$$\Delta_{\rm up} = \frac{[\text{Tot.} > {}_{\theta} \sigma^{G}_{4,max}]}{n*250}$$

$$\Delta_{\text{down}} = \frac{[\text{Tot.} < {}_{\theta} \sigma^{G}_{4,min}]}{n^{*}250}$$

CONSOB

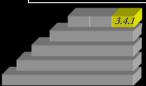
Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 3: Calibrazione degli Intervalli



Aggiornamento dell'Intervallo di Volatilità iniziale Iterazione della Procedura

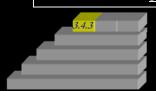
Step 3: Calibrazione degli Intervalli



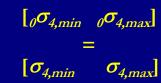
Aggiornamento dell'Intervallo di Volatilità iniziale Iterazione della Procedura

Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

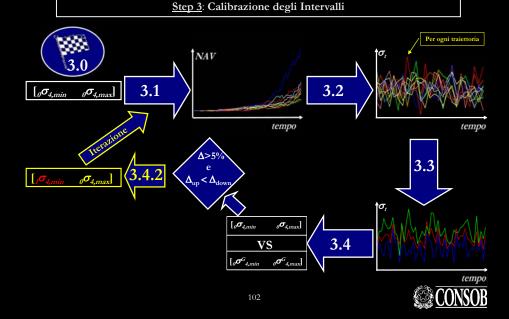
Step 3: Calibrazione degli Intervalli



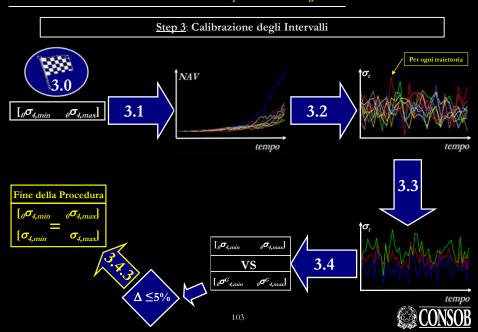
Fine della Procedura







Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza



Misure di Rischio basate sulla Volatilità: La Soluzione per l'Autorità di Vigilanza

Step 3: Calibrazione degli Intervalli

OUTPUT

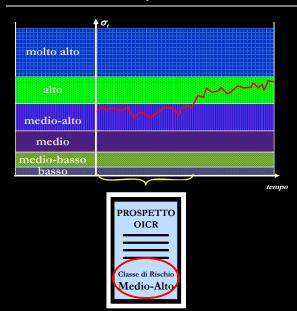
Classi di Rischio	Intervalli di Volatilità	
	$\sigma_{\!\scriptscriptstyle min}$	$oldsymbol{\sigma}_{max}$
basso	0,01%	0,49%
medio-basso	0,50%	1,99%
medio	2,00%	3,99%
medio-alto	4,00%	9,99%
alto	10,00%	24,99%
molto alto	25,00%	sopra 25,00%

• Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili

- Concetti Preliminari sui Rischi nei Fondi
- Elementi Definitori sui Fondi Flessibili
- La Regolamentazione di Trasparenza in Italia
- Misure di Rischio basate sulla Volatilità
- Realizzazione del Rischio e Regolamentazione di Trasparenza
- Analisi Empirica
 - · Descrizione della Metodologia
 - Risultati

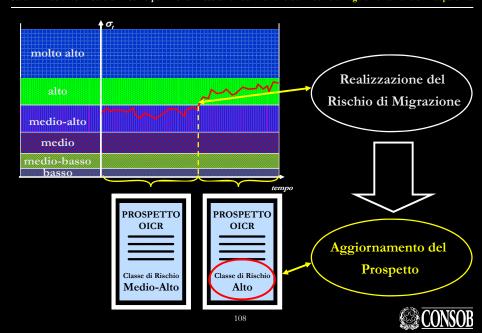
105





CONSOE

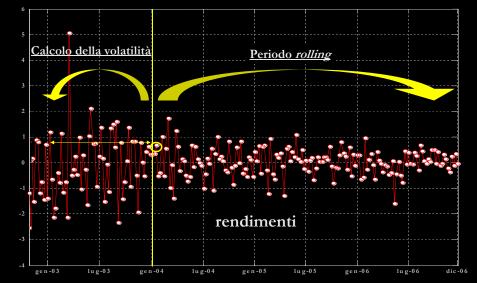
Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili: Realizzazione del Rischio e Regolamentazione di Trasparenza



• Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili

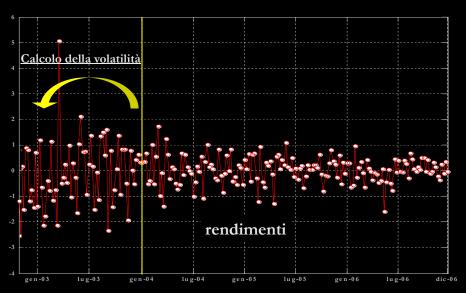
- Concetti Preliminari sui Rischi nei Fondi
- Elementi Definitori sui Fondi Flessibili
- La Regolamentazione di Trasparenza in Italia
- Misure di Rischio basate sulla Volatilità
- Realizzazione del Rischio e Regolamentazione di Trasparenza
- Analisi Empirica
 Descrizione della Metodologia
 - Risultati

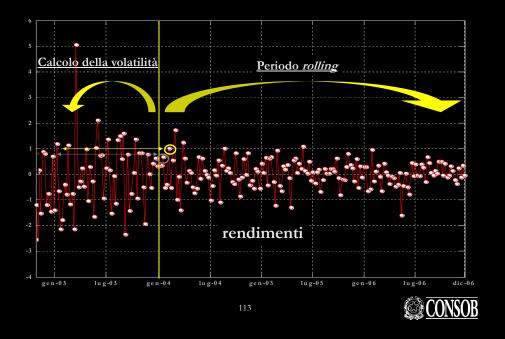
Analisi empirica: Descrizione della metodologia



rendimenti

Analisi empirica: Descrizione della metodologia

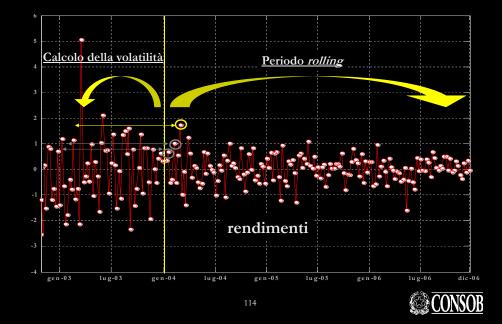




Indice

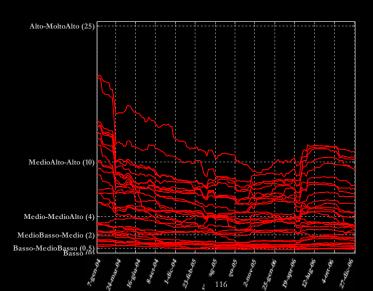
• Garch Diffusivi vs Misure di Rischio per i Fondi Flessibili

- Concetti Preliminari sui Rischi nei Fondi
- Elementi Definitori sui Fondi Flessibili
- La Regolamentazione di Trasparenza in Italia
- Misure di Rischio basate sulla Volatilità
- Realizzazione del Rischio e Regolamentazione di Trasparenza
- Analisi Empirica
 - · Descrizione della Metodologia
 - Risultati

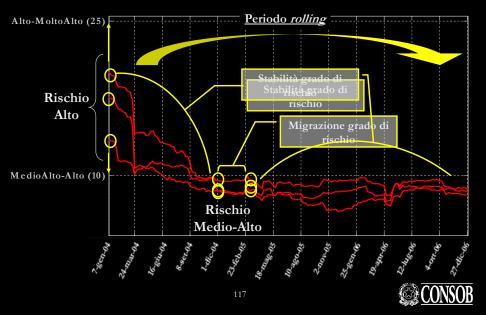


Analisi empirica: Risultati

Plot delle Serie Storiche della Volatilità di 31 Fondi Flessibili Italiani

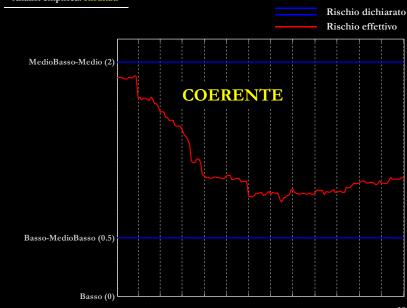


Serie storica della volatilità



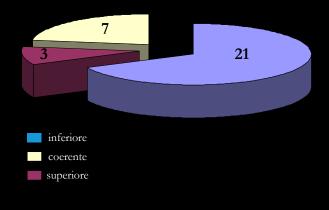


Analisi empirica: Risultati



Conclusioni

- 1. La Volatilità è una misura di rischio fondamentale in finanza:
 - ampia gamma di applicazioni
 - variabile indipendente di ogni altra misura di rischio
- 2. La Volatilità varia in modo casuale nel tempo, identificando un Processo Stocastico
- 3. Il Processo Stocastico della Volatilità è tipicamente analizzato con Modelli Garch
- 4. Il Limite Diffusivo dei Modelli Garch secondo il Teorema della Convergenza consente di definire intervalli di previsione attendibili per i valori futuri della Volatilità.
- 5. I Garch Diffusivi possono essere utilmente impiegati per la definizione di robuste ed efficaci Misure di Rischio basate sulla Volatilità per i Fondi Flessibili ...

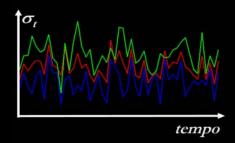


122

Conclusioni

... INFATTI

Attraverso Modelli Garch Diffusivi si costruisce la Banda di Previsione della Volatilità:



determinando Intervalli di Volatilità quali "Sottostante" Quantitativo alle Classi di Rischio Qualitative individuate dalla Regolamentazione di Trasparenza

Previsioni della Volatilità nei mercati finanziari attraverso approcci Garch Diffusivi