

Syllabus of the presentation

- Review of Fourier Methods in Option Pricing
- Calibration and Performance
- Greek derivation
- · Greek Behavior of New FT-Q

Marcello Minenna

Terminal Spot Price S_{τ} European Call

In AJD models Call Price can be expressed in a form close to the canonical Black - Scholes - Merton style

$$C_{t} = S_{t}P_{1}(\Theta) - Ke^{-r\tau}P_{2}(\Theta)$$

where

$$P_1(\Theta), P_2(\Theta) = \Pr(\ln S_T \ge \ln[K])$$

under different martingale measures

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

$$P_1(\Theta), P_2(\Theta) = \Pr(\ln S_T \ge \ln[K])$$

under different martingale measures

determined by using the Levy's inversion formula, i.e.:

$$\Pr(\ln S_T \ge \ln[K]) = \frac{1}{2} + \frac{1}{\pi} \int_0^{\infty} \operatorname{Re} \left[\frac{e^{-i\phi \ln[K]} \widetilde{f}_j(\phi)}{i\phi} \right] d\phi$$

Marcello Minenna

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

$$\Pr(\ln S_T \ge \ln[K]) = \frac{1}{2} + \frac{1}{\pi} \int_0^{\infty} \operatorname{Re} \left[\frac{e^{-i\phi \ln[K]} \widetilde{f}_j(\phi)}{i\phi} \right] d\phi$$
requires

a close formula for the Characteristic Function of the log - terminal price, i.e.:

$$\widetilde{f}_{\tau}(\phi) = E[e^{i\phi \ln S_{\tau}}]$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

$$\widetilde{f}_{T}(\phi) = E\left[e^{i\phi \ln S_{T}}\right]$$
has

a closed formula for AJD models

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

$$dS_t = \mu S_t dt + \sqrt{v_t} S_t dz_t^{(1)}$$

$$dv_t = \kappa [\theta - v_t] dt + \sigma \sqrt{v_t} dz_t^{(2)}$$

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

PDE Derivation for portfolio replication

$$f = f(S, v, t)$$

$$\begin{split} df &= \begin{array}{l} \frac{\partial f}{\partial S} \left(\mu S dt + \sqrt{v} S dz_1 \right) + \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial v} \left[\kappa \left(\theta - v \right) dt + \sigma \sqrt{v} dz_2 \right] + \\ &+ \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \left(v S^2 dt \right) + \frac{1}{2} \frac{\partial^2 f}{\partial t} \left(\sigma^2 v dt \right) + \frac{\partial^2 f}{\partial S^2} \left(S \sigma \rho_{1,2} v \right) dt \end{split}$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

PDE Derivation for portfolio replication

$$\pi = f_1 - \Delta_1 f_0 - \Delta_0 S$$

the coefficients Δ_1, Δ_0 are chosen in order to vanish any randomness of the portfolio

$$l\pi = \frac{\partial f_1}{\partial t} dt + \frac{1}{2} \frac{\partial^2 f_2}{\partial t} (v S^2 dt) + \frac{\partial f_1}{\partial t} [\kappa (\theta - v) dt] + \frac{1}{2} \frac{\partial^2 f_1}{\partial v^2} (\sigma^2 v dt) + \frac{\partial^2 f_2}{\partial t^2} (S \sigma \rho_{1,2} v) dt - \frac{\partial^2 f_1}{\partial t} \frac{\partial v}{\partial v} \frac{\partial f_2}{\partial t} dt - \frac{\partial^2 f_2}{\partial t} \frac{\partial^2 f_2}{\partial v} [\kappa (\theta - v) dt] + \frac{\partial^2 f_1}{\partial t} \frac{\partial v}{\partial v} \frac{\partial f_2}{\partial v} \frac{\partial v}{\partial v} \frac{\partial v}{\partial$$

 $\frac{\partial f_1/\partial v}{\partial f_1/\partial v} \frac{\partial f_2}{\partial v} \left[\kappa \left(\theta - v \right) dt \right] - \frac{\partial f_1/\partial v}{\partial f_1/\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial S^2} \left(v S^2 dt \right) - \frac{\partial f_1/\partial v}{\partial f_1/\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial v^2} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial f_2} \frac{1}{2} \frac{\partial^2 f_2}{\partial v^2} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial f_2} \frac{1}{2} \frac{\partial^2 f_2}{\partial v^2} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial f_2} \frac{1}{2} \frac{\partial^2 f_2}{\partial v^2} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial f_2} \frac{1}{2} \frac{\partial^2 f_2}{\partial v^2} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial v^2} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial v} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial v} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial v} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial v} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial v} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial v} \frac{1}{2} \frac{\partial^2 f_2}{\partial v} \left(\sigma^2 v dt \right) - \frac{\partial f_1/\partial v}{\partial v} \frac{1}{2} \frac{\partial f_1/\partial$ $\begin{array}{c|c} \frac{\partial f_{0}/\partial v}{\partial f_{0}/\partial v} & \frac{\partial v}{\partial v} & \left(\kappa \left(v \right) \right) \\ \frac{\partial f_{1}/\partial v}{\partial f_{0}/\partial v} & \frac{\partial^{2} f_{0}}{\partial S \partial v} & \left(S \sigma \rho_{1,2} v \right) dt \end{array}$

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

PDE Derivation for portfolio replication

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

PDE specification for the pricing of a Call option:

$$-rC + \frac{\partial C}{\partial t} + \frac{\partial C}{\partial S}rS + \frac{1}{2}\frac{\partial^2 C}{\partial S^2}vS^2 + \frac{1}{2}\frac{\partial^2 C}{\partial v^2}\sigma^2v + \frac{\partial C}{\partial S\partial v}S\sigma\rho_{1,2}v + \frac{\partial C}{\partial v}\left[\kappa(\theta-v) - \lambda^\star\left(S,v,t\right)\right] = 0$$

$$C(S,v,t=T) = \max(0,S_T-K)$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

PDE Shift into the forward space

$$\tilde{C}(x,v,\tau) = e^{r\tau}C(x,v,\tau) = e^{r(t-t)}C(S,v,t,T)$$

$$-\frac{\partial \hat{C}}{\partial \tau} + r\frac{\partial \hat{C}}{\partial x} + \frac{1}{2}\frac{\partial^2 \hat{C}}{\partial v^2}(\sigma^2 v) + \frac{\partial^2 \hat{C}}{\partial x \partial v}(v \sigma \rho_{1,2}) + \frac{1}{2}\left(\frac{\partial^2 \hat{C}}{\partial x^2} - \frac{\partial \hat{C}}{\partial x}\right)v + \frac{\partial \hat{C}}{\partial v}\left[\kappa(\theta - v) - \hat{\lambda}v\right] = 0$$

$$\tilde{C}(x_{\tau}, v_{\tau}, \tau = 0) = \max(0, e^{x_{\tau-1}} - K)$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

PDE Shift into Black-Scholes-Merton space

$$C_{\mathbf{t}}(S,v,t,T) = S_{\mathbf{t}}P_{1}(S,v,t,T) - Ke^{-r(T-t)}P_{2}(S,v,t,T)$$

$$\tilde{C}_{\mathbf{t}}(x,v,\tau) = e^{x_{\tau}}P_{1}(x,v,\tau) - KP_{2}(x,v,\tau)$$

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

PDE Shift into Black-Scholes-Merton space

$$\begin{split} &-\frac{\partial P_j}{\partial \tau} + \frac{\partial P_j}{\partial x}(r + c_j v) + \frac{1}{2}\frac{\partial^2 P_j}{\partial v^2}(\sigma^2 v) + \frac{\partial^2 P_j}{\partial x \partial v}(v \sigma \rho_{1,2}) + \frac{1}{2}\frac{\partial^2 P_j}{\partial x^2}v + \frac{\partial P_j}{\partial v}\left(a - b_j v\right) = 0 \\ &P_j\left(x_\tau, v_\tau, \tau = 0\right) = \mathbf{1}_{(x_\tau \geq \ln K)} \\ & \quad \text{where } c_1 = \frac{1}{2}, \quad c_2 = -\frac{1}{2}, \quad a = \kappa \theta, \quad b_1 = \kappa + \tilde{\lambda} - \rho_{1,2}\sigma, \quad b_2 = \kappa + \tilde{\lambda} \end{split}$$

by using Feynman Cac formula....

$$P_j(x_{\tau}, v_{\tau}, \tau) = P_j(x_{\tau=0} \ge \ln K \mid x_{\tau}, v_{\tau})$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

PDE Shift into Fourier space

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

Marcello Minenna

PDE Shift into ODE space

by using the solution:
$$\tilde{f}_j(x_\tau,v_\tau,\tau=0,\xi|x_\tau,v_\tau)=e^{\left(C_\tau^{(j)}+D_\tau^{(j)}v_t+i\xi x_\tau\right)}$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - theory

Example of derivation for Heston Model

ODE Solutions

$$\begin{split} C_j &= ri\xi(T-t) - \frac{2a}{\sigma^2} \left(\alpha_2(T-t) + \ln \frac{\frac{\alpha_2}{\alpha_1} e^{d(T-t)} - 1}{\frac{\alpha_2}{\alpha_1} - 1} \right) \\ D_j &= -\frac{2\alpha_2}{\sigma^2} \frac{1 - e^{d(T-t)}}{1 - \frac{\alpha_2}{\alpha_1} e^{d(T-t)}} \\ &= \sqrt{(\rho_{1,2} \sigma \xi_i - b_j)^2 - \sigma^2 (2c_j \xi_i - \xi^2)} \\ &\alpha_1 &= \frac{\rho_{1,2} \sigma \xi_i^2 - b_j + d}{2\sigma^2}, \\ &\alpha_2 &= \frac{\rho_{1,2} \sigma \xi_i^2 - b_j - d}{2\sigma^2}, \end{split}$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

Example of derivation for Heston Model

PRICING

$$C_t = S_t P_1 - K e^{-r(T-t)} P_2$$

$$\frac{1}{2} + \frac{1}{2} \int_{-\infty}^{\infty} \Re \left\{ \frac{e^{-i\xi \ln K}}{i\epsilon} e^{\left[C_r^{(j)} + D_r^{(j)} v_t + i\xi [\ln S_t + r(T-t)]\right]} \right\} dt$$

$$P_{j} = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \Re\left\{ \frac{e^{-i\xi \ln K}}{i\xi} \ e^{\left[C_{r}^{(j)} + D_{r}^{(j)} v_{l} + i\xi [\ln S_{l} + r(T - t)]\right]} \right\} d\xi$$

$$\begin{aligned} \text{with:} & d = \sqrt{(\rho_{1,2}\sigma\xi i - b_j)^2 - \sigma^2(2c_j\xi i - \xi^2)} \\ C_j = ri\xi(T-t) - \frac{2a}{\sigma^2} \left(\alpha_2(T-t) + \ln\frac{\frac{a_2}{a_1}e^{i(T-t)} - 1}{\frac{a_2}{a_1} - 1}\right) & \alpha_1 = \frac{\rho_{1,2}\sigma\xi i - b_j + d}{2} \ , \ \alpha_2 = \frac{\rho_{1,2}\sigma\xi i - b_j - d}{2} \\ D_j = -\frac{2\alpha_2}{\sigma^2} \frac{1 - e^{i(T-t)}}{1 - \frac{a_2}{a_1}e^{i(T-t)}} & a_1 = \kappa \tilde{\rho} \\ b_1 = \kappa + \tilde{\lambda} - \rho_{1,2}\sigma \\ b_2 = \kappa + \tilde{\lambda} \end{aligned}$$

$$D_{j} = -\frac{2\alpha_{2}}{\sigma^{2}} \frac{1 - e^{\theta(T-t)}}{1 - \frac{\alpha_{1}}{\alpha_{1}}e^{\theta(T-t)}} \\ D_{j} = -\frac{2\alpha_{2}}{\sigma^{2}} \frac{1 - e^{\theta(T-t)}}{1 - \frac{\alpha_{1}}{\alpha_{1}}e^{\theta(T-t)}} \\ D_{j} = -\frac{\pm \frac{1}{2}}{\alpha_{2}} \\ D_{j} = -\frac{\pm \frac{1}{2}}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\ D_{j} = -\frac{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma}{\kappa + \tilde{\lambda} - \rho_{1,2}\sigma} \\$$

Review of Fourier Methods in Option Pricing - practice $P_1(\Theta), P_2(\Theta)$ Quadrature Algorithm Old FT - Q **High Order Newton Cotes** Algorithm Up to 8th $C_{\star} = S_{\star}P_{1}(\Theta) - Ke^{-r\tau}P_{2}(\Theta)$ Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

Marcello Minenna

In order to overcome the cited problems of Old FT – Q:

• Gauss - Lobatto Quadrature Algorithm

a set of 4100 prices along the strike

• Re-adjustment of $\widetilde{f}_T(\phi) = E[e^{i\phi \ln S_T}]$

 $C_r = S_r P_1(\Theta) - Ke^{-r\tau} P_2(\Theta)$

Review of Fourier Methods in Option Pricing - practice

In order to overcome the cited problems of Old FT – Q:

- Gauss Lobatto Quadrature Algorithm
- Re-adjustment of $\widetilde{f}_T(\phi) = E[e^{i\phi \ln S_T}]$

 $C_{\cdot} = S_{\cdot}P_{\cdot}(\Theta) - Ke^{-r\tau}P_{\cdot}(\Theta)$

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

Basic Gauss - Lobatto Quadrature Formula

$$\int_{C} dx \approx w_1 f(-1) + w_N f(1) + \sum_{i=1}^{N-1} w_i f(x_i)$$

$$\int_{-1}^{1} f(x) dx \approx w_1 f(-1) + w_N f(1) + \sum_{i=2}^{N-1} w_i f(x_i)$$

$$w_i = rac{2}{N\left(N-1
ight)\left[P_{N-1}\left(x_i
ight)
ight]^2}$$
 to the interval (-1,1)

 $w_1 = w_N = \frac{2}{N(N-1)}$

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

The Gautschi - Gander extension (2000)

ENHANCE

The Gauss Lobatto formula

They develop a GL recursive adaptive algorithm for a generic interval

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

The Gautschi - Gander extension (2000)

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

In order to overcome the cited problems of Old FT - Q:

- Gauss Lobatto Quadrature Algorithm
- Re-adjustment of $\tilde{f}_T(\phi) = E\left[e^{i\phi \ln S_T}\right]$

$$C_t = S_t P_1(\Theta) - Ke^{-r\tau} P_2(\Theta)$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

Example of re-adjstment for Heston Model

$$C_t = S_t P_1 - K e^{-r(T-t)} P_2$$

$$P_{j} = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \Re \left\{ \frac{e^{-i\xi \ln K}}{i\xi} e^{\left[C_{\tau}^{(j)} + D_{\tau}^{(j)} v_{t} + i\xi [\ln S_{t} + r(T - t)]\right]} \right\} d\xi$$

with:
$$d = \sqrt{(\rho_{1,2}\sigma\xi i - b_j)^2 - \sigma^2(2c_j\xi i - \xi^2)}$$

$$C_j = ri\xi(T-t) - \frac{2a}{\sigma^2} \left(a_2(T-t) + \ln\frac{\frac{\alpha_2}{\alpha_1}e^{\beta(T-t)} - 1}{\frac{\alpha_2}{\alpha_1} - 1} \right)$$

$$\alpha_1 = \frac{\rho_{1,2}\sigma\xi i - b_j + d}{2} , \ \alpha_2 = \frac{\rho_{1,2}\sigma\xi i - b_j - d}{2}$$

$$c_{1/2} = \pm \frac{1}{2}$$

$$a = \kappa\theta$$

$$b_1 = \kappa + \tilde{\lambda} - \rho_{1,2}\sigma$$

$$b_2 = \kappa + \tilde{\lambda}$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

Example of re-adjstment for Heston Model

$$C_j = ri\xi(T-t) - \frac{2a}{\sigma^2} \left(\alpha_2(T-t) + \ln \frac{\frac{\alpha_2}{\alpha_1} e^{d(T-t)} - 1}{\frac{\alpha_2}{\alpha_1} - 1} \right)$$

$$D_j = -\frac{2\alpha_2}{\sigma^2} \frac{1 - e^{d(T-t)}}{1 - \frac{\alpha_2}{\alpha_1} e^{d(T-t)}}$$

$$C_{j} = ri\xi\tau - \frac{a}{\sigma^{2}} \left(\rho_{1,2}\sigma\xi i - b_{j} + d\right)\tau - \frac{a}{\sigma^{2}} 2\ln\left(1 - \frac{\left(1 - e^{-d\tau}\right)\left(\rho_{1,2}\sigma\xi i - b_{j} + d\right)}{2d}\right)$$

$$D_{j} = \frac{\left(2c_{j}\xi i - \xi^{2}\right)\left(1 - e^{-d\tau}\right)}{2d - \left(a_{j}\sigma\xi i - b_{j} + d\right)\left(1 - e^{-d\tau}\right)}$$

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

Pros(+)

STABILITY **ACCURACY** Cons (-)

SPEED

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

Cooley - Tukey algorithm

$$\omega\left(n\right) = \sum_{j=1}^{N} e^{-i\frac{2\pi}{N}(j-1)(n-1)} f_{j} = \sum_{j=1}^{\frac{N}{2}} e^{-i\frac{2\pi}{N}(2j-1)(n-1)} f_{2j} + \sum_{j=1}^{\frac{N}{2}} e^{-i\frac{2\pi}{N}2j(n-1)} f_{2j+1}$$

Review of Fourier Methods in Option Pricing - practice

Cooley - Tukey algorithm

Marcello Minenna

Review of Fourier Methods in Option Pricing - practice

<u>Pros</u> (+)

Cons (-)

FASTER

Marcello Minenna

Syllabus of the presentation

- Review of Fourier Methods in Option Pricing
- Calibration and Performance
- Greek derivation
- Greek Behaviour of New FT-Q

Marcello Minenna 37

The Calibration Procedure and Performance $SSE_t = \min_{v(t),\Phi} \sum_{n=1}^{N} \left[C_{Market}(S_t) - C_{AJD}(S_t) \right]^2$ Quadrature Algorithm Fast Fourier Trasform FT - Q FFT Quadrature Algorithm FFT - Q FFT

The Calibration Procedure and Performance

$$SSE_{t} = \min_{v(t) \in \Phi} \sum_{n=1}^{N} \left[C_{Market}(S_{t}) - C_{AJD}(S_{t}) \right]^{2} \underbrace{ \begin{array}{c} \text{through} \\ \text{through} \end{array}}_{} \textbf{Fast Fourier Trasform}$$

<u>Pros</u> (+)

<u>Cons</u> (-)

SPEED

STABILITY *
ACCURACY **

Marcello Minenna 40

The Calibration Procedure and Performance $SSE_{t} = \min_{v(t) \in \mathcal{S}} \sum_{s=1}^{N} \left[C_{Market}(S_{t}) - C_{AJD}(S_{t}) \right]^{2} \xrightarrow{\text{through}} \text{Quadrature Algorithm New FT - Q}$ $\frac{\text{Pros (+)}}{\text{STABILITY}}$ ACCURACY SPEED $\frac{\text{Marcello Minenna}}{\text{Marcello Minenna}}$

The Calibration Procedure and Performance

Greek derivation

Marcello Minenna

By keeping in mind that <u>only</u> New FT-Q is stable and accurate, some figures on speed

Original Option Pricing Formulas are used

FFT	Heston Model	Merton Model	BCC Model
	7.26 sec.	10.54 sec.	18.33 sec.
NEW FT - Q	Heston Model	Merton Model	BCC Model
	55.12 sec.	66.48 sec.	110.39 sec.
OLD FT – Q	Heston Model	Merton Model	BCC Model
	390.41 sec.	454.76 sec.	722.1 sec.

By now, the speed of Fourier Trasform method is closer than ever to the FFT calibration time

Marcello Minenna

The Calibration Procedure and Performance

Calibration Performances using Option Readjusted Pricing Formulas

where available

FFT	Heston Model	Merton Model	BCC Model
	7.24 sec.	10.54 sec.	18.32 sec.
NEW FT - Q	Heston Model	Merton Model	BCC Model
	23.13 sec.	66.48 sec.	48.7 sec.
OLD FT – Q	Heston Model	Merton Model	BCC Model
	331.6 sec.	454.76 sec.	688.5 sec.

Syllabus of the presentation

- Review of Fourier Methods in Option Pricing
- Calibration Procedure and Performance
- Greek derivation
- Greek Behaviour of New FT-Q

European Call Maturity T Terminal Spot Price S_T In AJD models Greeks can be derived by using the following equivalences $S_t \frac{\partial P_t}{\partial S_t} + K \frac{\partial P_t}{\partial K} = 0 \qquad \frac{\partial^2 P_t}{\partial S_t \partial K} = \frac{\partial^3 P_t}{\partial K \partial S_t} \qquad S_t \frac{\partial P_t}{\partial S_t} - e^{-r(T-t)} K \frac{\partial P_t}{\partial S_t} = 0$ $S_t \frac{\partial P_t}{\partial S_t} + K \frac{\partial P_t}{\partial K} = 0 \qquad \frac{\partial^2 P_t}{\partial S_t \partial K} = \frac{\partial^3 P_t}{\partial K \partial S_t} \qquad P_t = \frac{\partial C_t}{\partial S_t} = -e^{-r(T-t)} P_t$

Marcello Minenna

43

Greek derivation

Example of derivation for Heston Model

$$\Delta_C = P_1$$

$$\Gamma_C = \frac{\partial P_1}{\partial S_t}$$

$$\mathcal{V}_{C} = S_{t} \frac{\partial P_{1}}{\partial v_{t}} - K e^{-r\tau} \frac{\partial P_{2}}{\partial v_{t}}$$

$$\rho_C = K \tau e^{-r\tau} P_2$$

$$\begin{array}{ll} \Theta_{C} = & -\frac{\partial P_{1}}{\partial S} \left(\frac{1}{2}vS^{2}\right) - \frac{\partial P_{1}}{\partial v}S\left[\sigma\rho_{1,2}v + \left[\kappa\left(\theta-v\right)-\lambda v\right]\right] - \frac{\partial^{2}P_{1}}{\partial v^{2}} \left(\frac{1}{2}S\sigma^{2}v\right) - \\ & -Ke^{-\tau\tau} \left[rP_{2} - \frac{1}{2}\sigma^{2}v\frac{\partial^{2}P_{1}}{\partial v^{2}} - \frac{\partial P_{1}}{\partial v}\left[\kappa\left(\theta-v\right)-\lambda v\right]\right] \end{array}$$

$$\mathfrak{V}_C = S_t \frac{\partial^2 P_1}{\partial v_t^2} - K e^{-r\tau} \frac{\partial^2 P_2}{\partial v_t^2}$$

Marcello Minenna

46

Syllabus of the presentation

- Review of Fourier Methods in Option Pricing
- Calibration Procedure and Performance
- Greek derivation
- Greek Behaviour of New FT-Q

Marcello Minenna 47

Lambda = 2

CappaV = 2

ThetaV = 0.3

EtaV = 0.1

Rho = 0

200