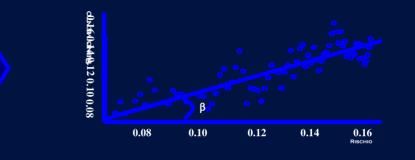

DERIVATIVES RISK MANAGEMENT AND QUANT SURVEILLANCE

Cass Business School

RISK MANAGEMENT OF A FINANCIAL INSTITUTION

RISK MANAGEMENT



... A COMPLEX SET OF GEARS RELATED TO RISK-RETURN OF FINANCIAL INSTRUMENTS

RISK MANAGEMENT OF A FINANCIAL INSTITUTION

RISK MANAGEMENT

... A COMPLEX SET OF GEARS RELATED TO RISK-RETURN OF FINANCIAL INSTRUMENTS

... THAT IS SIMULATED THROUGH PROCESSES

LET US DEFINE:

S PROCESS OF THE STOCK B PROCESS OF THE BOND f PROCESS OF THE DERIVATIVE

f=f(S,t)

LET US DEFINE:

S PROCESS OF THE STOCK B PROCESS OF THE BOND f PROCESS OF THE DERIVATIVE

WHERE:

f=f(S,t)

LET US COMPUTE:

V REPLICATING PORTFOLIO OF THE DERIVATIVE

REPLICATING PORTFOLIO OF THE DERIVATIVE

$$V_t = f(S, t) = N_s S_t + N_B B_t$$

WHERE:

$N_{\!\scriptscriptstyle \mathcal{S}}$ Number of stocks

N_B Number of bonds

DEFINITION OF THE PROCESSES

HP:

 $dS_t = \mu S_t dt + \sigma S_t dZ_t$

7

WHERE:

$$dZ_t \sim \varepsilon \sqrt{dt}$$
 $\varepsilon \sim N(0,1)$

DEFINITION OF THE PROCESSES

HP:

 $dS_t = \mu S_t dt + \sigma S_t dZ_t$

WHERE:

DEFINITION OF THE PROCESSES

HP:

 $dB_t = rB_t dt$

WHOSE SOLUTION IS:

$$B_t = e^{rt} \qquad orall t \in [0,T]$$

MARCELLO MINENNA

)K

DEFINITION OF THE PROCESSES

HP:

$$dV_t = N_s dS_t + N_B dB_t$$

WHERE:

$V_t = f(S, t)$

APPLYING THE DEFINITIONS OF BOTH S AND B PROCESSES

$dV_t = N_s dS_t + N_B dB_t$

$dV_{t} = N_{s}\left(\mu S_{t}dt + \sigma S_{t}dZ_{t}\right) + N_{B}\left(rB_{t}dt\right)$

... MULTIPLYING

$dV_t = N_s \mu S_t dt + N_s \sigma S_t dZ_t + N_B r B_t dt$

... MULTIPLYING

$dV_t = N_s \mu S_t dt + N_s \sigma S_t dZ_t + N_B r B_t dt$

COLLECTING:

$dV_t = (N_s \mu S_t + N_B r B_t) dt + \sigma S_t N_s dZ_t$

MARCELLO MINENNA

]}

LET US DEFINE:

$$\mu S_t = a$$

$$\sigma S_t = b$$

LET US DEFINE:

$$\mu S_t = a$$

$$\sigma S_t = b$$

 $dS_t = adt + bdZ_t$

ITO'S PROCESS

THE SDE ASSOCIATED TO f=f(S,t) IS OBTAINED BY USING ITO'S LEMMA (BROWNIAN MOTION DIFFERENTIATING RULE)

$$df = rac{\partial f}{\partial t} dt + rac{\partial f}{\partial S} ds + rac{1}{2} b^2 rac{\partial^2 f}{\partial S^2} dt$$

THE SDE ASSOCIATED TO f=f(S,t) IS OBTAINED BY USING ITO'S LEMMA (BROWNIAN MOTION DIFFERENTIATING RULE)

$$df = rac{\partial f}{\partial t} dt + rac{\partial f}{\partial S} ds + rac{1}{2} b^2 rac{\partial^2 f}{\partial S^2} dt$$

BY SUBSTITUTING THE SDE ASSOCIATED TO S WE OBTAIN:

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}\left(adt + bdZ_t\right) + \frac{1}{2}b^2\frac{\partial^2 f}{\partial S^2}dt$$

... SIMPLIFYING

$$df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}a + \frac{1}{2}b^2\frac{\partial^2 f}{\partial S^2}\right)dt + b\frac{\partial f}{\partial S}dZ_t$$

... SIMPLIFYING

$$df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}a + \frac{1}{2}b^{2}\frac{\partial^{2}f}{\partial S^{2}}\right)dt + b\frac{\partial f}{\partial S}dZ_{t}$$
REMEMBERING: $\mu S_{t} = a$
 $\sigma S_{t} = b$
 $df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_{t} + \frac{1}{2}\left(\sigma S_{t}\right)^{2}\frac{\partial^{2}f}{\partial S^{2}}\right)dt + \sigma S_{t}\frac{\partial f}{\partial S}dZ_{t}$

BY RECALLING THE HP:

 $dV_t = df$

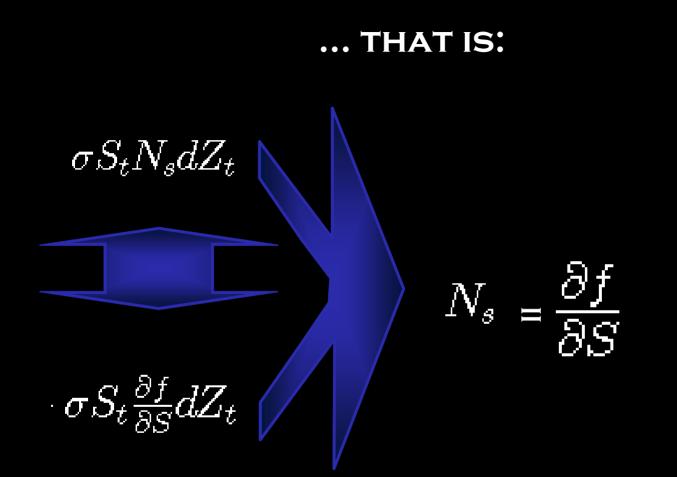
BY RECALLING THE HP:

$$dV_t = df$$

... LET US COMPARE THE STOCHASTIC COMPONENTS:

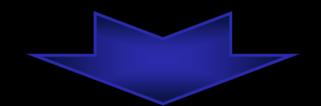
$$df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_t + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t$$

$dV_t = (N_s \mu S_t + N_B r B_t) dt + \sigma S_t N_s dZ_t^{\dagger}$

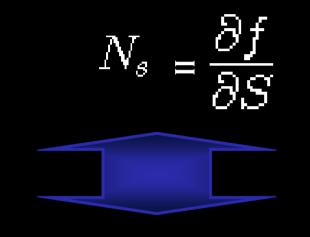

... THAT IS:

$\sigma S_t N_s dZ_t$

 $+\sigma S_t rac{\partial f}{\partial S} dZ_t$

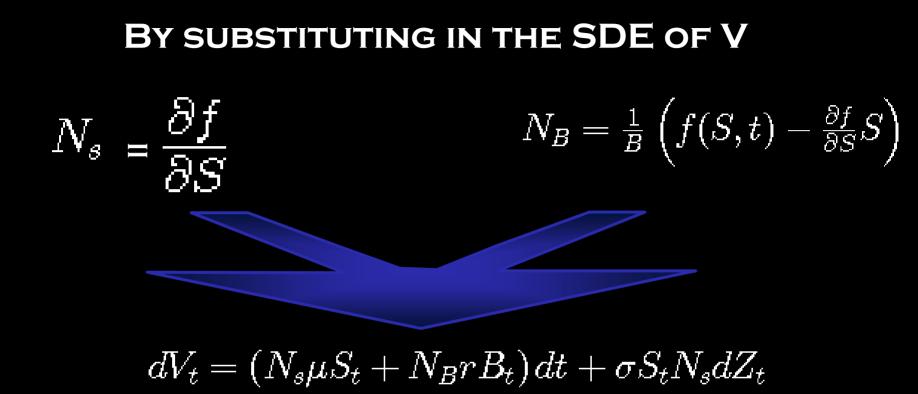


BY REMEMBERING:

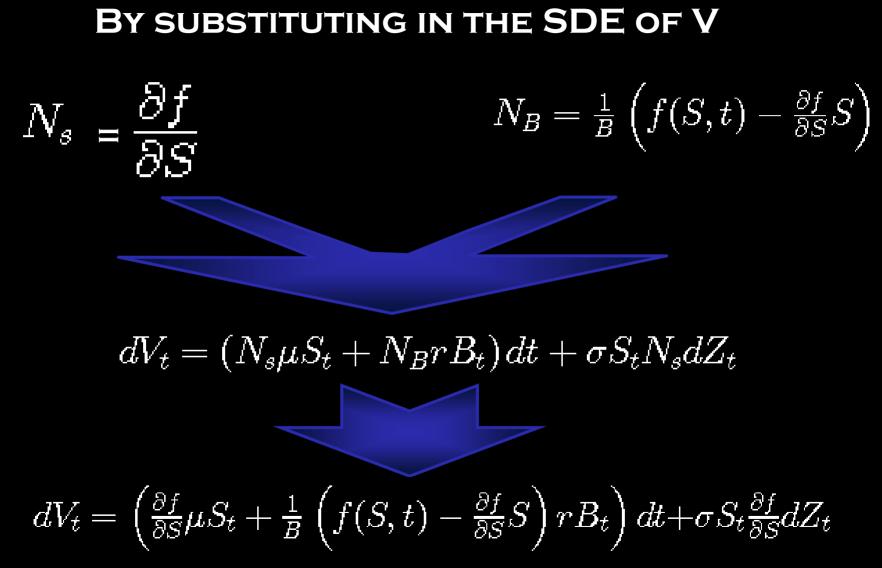

 $V_t = f(S, t) = N_s S_t + N_B B_t$

 $N_B = \frac{1}{B} \left(f(S, t) - N_s S \right)$

 $N_B = \frac{1}{B} \left(f(S, t) - N_s S \right)$



$$N_{s} = \frac{\partial f}{\partial S}$$


$$N_{B} = \frac{1}{B} \left(f(S,t) - N_{s}S \right)$$

$$N_{B} = \frac{1}{B} \left(f(S,t) - N_{s}S \right)$$

SIMPLIFYING:

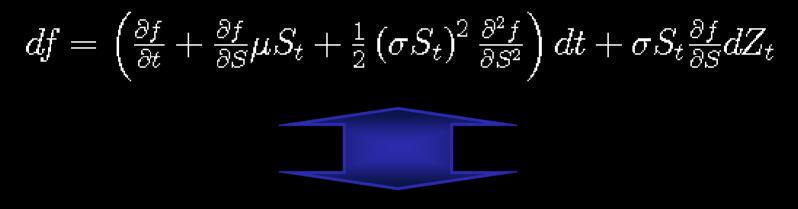
$$dV_t = \left(\frac{\partial f}{\partial S}\mu S_t + \frac{1}{B}\left(f(S,t) - \frac{\partial f}{\partial S}S\right)rB_t\right)dt + \sigma S_t\frac{\partial f}{\partial S}dZ_t$$

$$dV_t = \left(\frac{\partial f}{\partial S}\mu S_t + rf(S,t) - \frac{\partial f}{\partial S}rS\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t$$

MARCELLO MINENNA

F

BY RECALLING THE HP:


 $dV_t = df$

BY RECALLING THE HP:

$$dV_t = df$$

... LET US COMPARE THE DETERMINISTIC COMPONENTS:

$$dV_t = \left(\frac{\partial f}{\partial S}\mu S_t + rf(S,t) - \frac{\partial f}{\partial S}rS\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t$$

$$\left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_t + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right) = \left(\frac{\partial f}{\partial S}\mu S_t + rf(S,t) - \frac{\partial f}{\partial S}rS\right)$$

$$\left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_t + \frac{1}{2}(\sigma S_t)^2 \frac{\partial^2 f}{\partial S^2}\right) = \left(\frac{\partial f}{\partial S}\mu S_t + rf(S,t) - \frac{\partial f}{\partial S}rS\right)$$

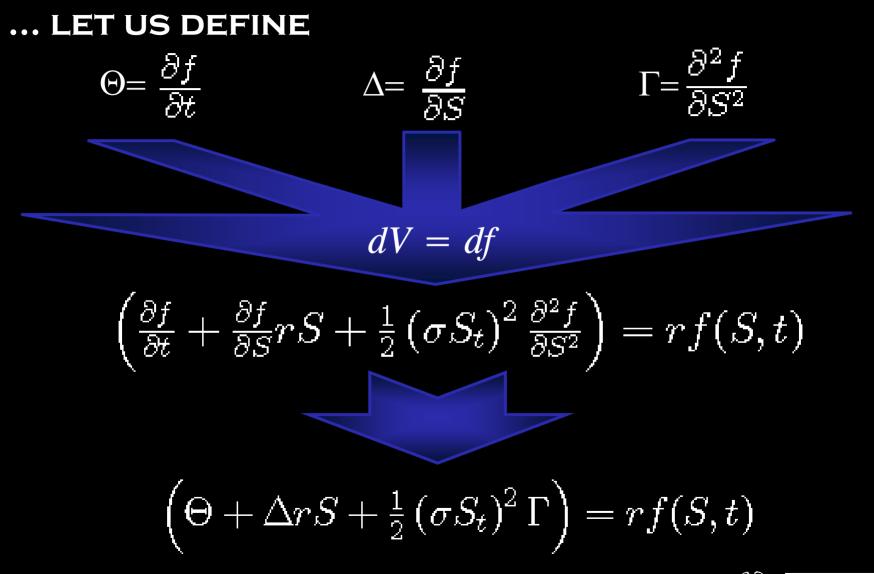
$$\left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}rS + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right) = rf(S,t)$$

... ALSO KNOWN AS BLACK-SCHOLES PDE

... CONSIDERING THAT THE dZ COMPONENT IS THE SAME BOTH FOR dV and df

... CONSIDERING THAT THE dZ COMPONENT IS THE SAME BOTH FOR dV and df

BLACK-SCHOLES PDE
DESCRIBESTHE DERIVATIVE CAN BE
REPLICATED BYf=f(S,t) N_s NUMBER OF STOCKSAS TIME ELAPSES N_B NUMBER OF BONDS



... LET US DEFINE $\Theta = \frac{\partial f}{\partial t} \qquad \Delta =$

Ø 89

It is important to observe that we can compute the differential expression of f=f(S,t) both with Taylor's formula and with ITO's lemma obtaining the same result

COMPUTATION OF df BY MEANS OF TAYLOR'S FORMULA

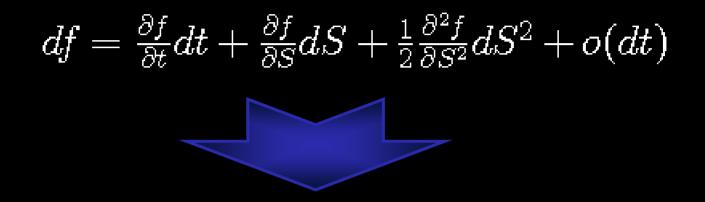
COMPUTATION OF df BY MEANS OF TAYLOR'S FORMULA

Let us remember that dS is of order \sqrt{dt}

$$dS_t = \mu S_t dt + \sigma S_t dZ_t \qquad \qquad dZ_t \sim \varepsilon \sqrt{dt}$$

COMPUTATION OF df BY MEANS OF TAYLOR'S FORMULA

LET US REMEMBER THAT dS is of order \sqrt{dt}


$$dS_t = \mu S_t dt + \sigma S_t dZ_t \qquad dZ_t \sim \varepsilon \sqrt{dt}$$

IT IS POSSIBLE TO EXTEND TAYLOR'S FACTORIZATION TO o(dt)

$$df = rac{\partial f}{\partial t} dt + rac{\partial f}{\partial S} dS + rac{1}{2} rac{\partial^2 f}{\partial S^2} dS^2 + o(dt)$$

SUBSTITUTING THE DEFINITION OF dS in df



 $df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}\left(\mu S_t dt + \sigma S_t dZ_t\right) + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\left(\mu S_t dt + \sigma S_t dZ_t\right)^2 + o(dt)$

LET US FOCUS ON:

 $\left(\mu S_t dt + \sigma S_t dZ_t\right)^2$

 $|\sigma^2 S_t^2 dt|$

... SIMPLIFYING

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}\left(\mu S_t dt + \sigma S_t dZ_t\right) + \frac{1}{2}\sigma^2 S_t^2 dt + o(dt)$$
$$df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_t + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t + o(dt)$$

RISK MANAGEMENT: LE GRECHE

$$df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_t + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t + o(dt)$$

$$\mathbf{Taylor}$$

$$\mathbf{vs.}$$

$$\mathbf{tro}$$

$$df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_t + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t$$

Q.E.D.

... BUT IF TAYLOR'S FACTORIZATION

LEADS TO THE SAME RESULT OF ITO'S LEMMA

... BUT IF ITO'S LEMMA HAS SHOWN THAT df = dV

... THAT IS THE VALUE OF A DERIVATIVE CAN BE STUDIED BY MEANS OF THE VALUE OF A PORTFOLIO CONSTITUTED BY

 N_s Number of stocks N_B Number of bonds

... SO LET US USE TAYLOR'S FACTORIZATION IN ORDER TO STUDY WHAT HAPPENS WHEN

 $f=f(S,t,\sigma)$

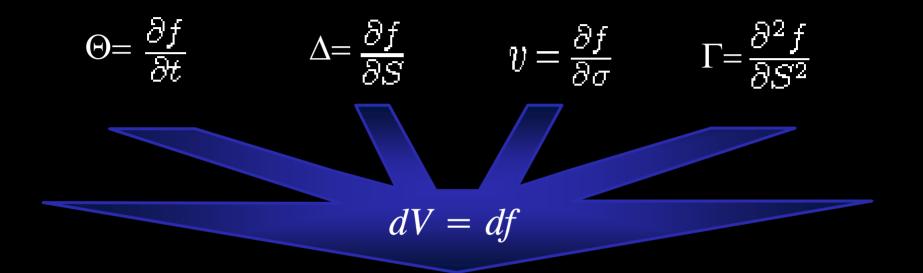
WITHOUT LOOSING GENERALITY

DERIVATION OF df with Taylor's formula

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}dS + \frac{\partial f}{\partial \sigma}d\sigma + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}dS^2 + \frac{1}{2}\frac{\partial^2 f}{\partial \sigma^2}d\sigma^2 + \frac{1}{2}\frac{\partial^2 f}{\partial t^2}dt^2 + \frac{\partial f}{\partial S\partial t}dtdS + \dots + o(dt)$$

We can expand Taylor's factorization to $\mathit{o}(\mathit{dt})$

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}dS + \frac{\partial f}{\partial \sigma}d\sigma + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}dS^2 + o(dt)$$



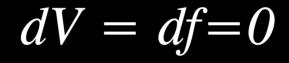
... LET US DEFINE

$$\Theta = \frac{\partial f}{\partial t} \qquad \Delta = \frac{\partial f}{\partial S} \qquad v = \frac{\partial f}{\partial \sigma} \qquad \Gamma = \frac{\partial^2 f}{\partial S^2}$$

... LET US DEFINE

$df = \Theta dt + \Delta dS + v \ d\sigma + \frac{1}{2}\Gamma dS^2 + o(dt)$

... BECAUSE WE HAVE SHOWN THAT dV = df



IN ORDER TO AVOID DIFFERENCES IN THE PORTFOLIO

... BECAUSE WE HAVE SHOWN THAT dV = df

IN ORDER TO AVOID DIFFERENCES IN THE PORTFOLIO

... BECAUSE WE HAVE SHOWN THAT dV = df

IN ORDER TO AVOID DIFFERENCES IN THE PORTFOLIO

dV = df = 0

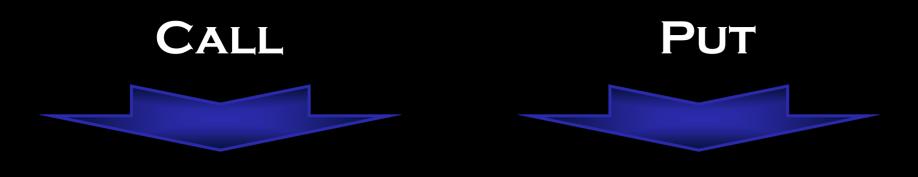
 $0 = \Theta dt + \Delta dS + \upsilon \, d\sigma + \frac{1}{2} \Gamma dS^2$

...HEDGING IN PRACTICE IS BASED ON THE GREEKS

$\Theta = \Theta dt + \Delta dS + v \ d\sigma + \frac{1}{2} \Gamma dS^2$

HEDGING ACTIVITY IN PRACTICE

HP: BLACK-SCHOLES' WORLD

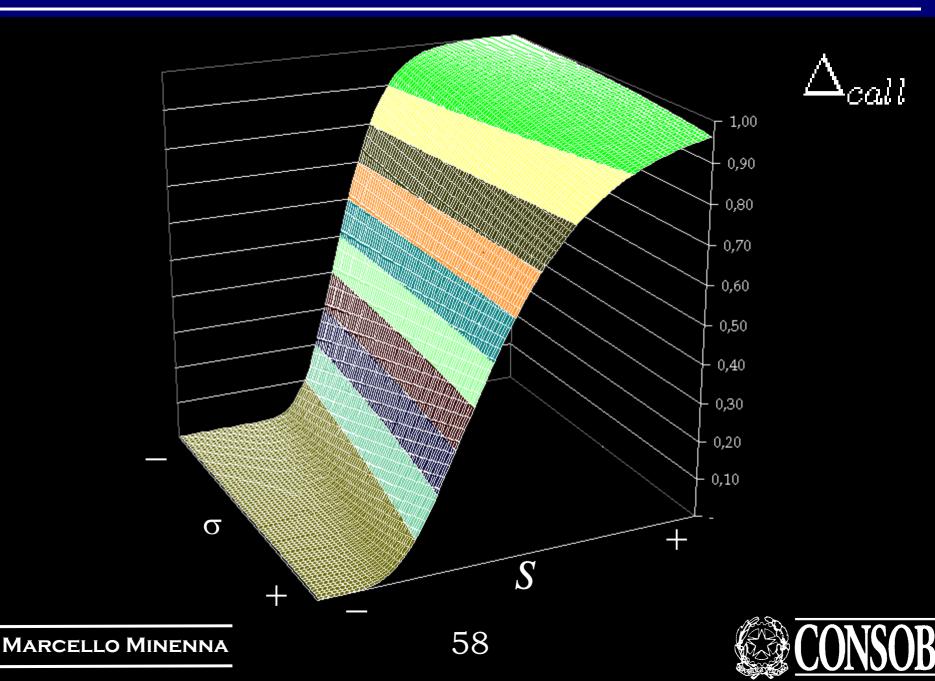


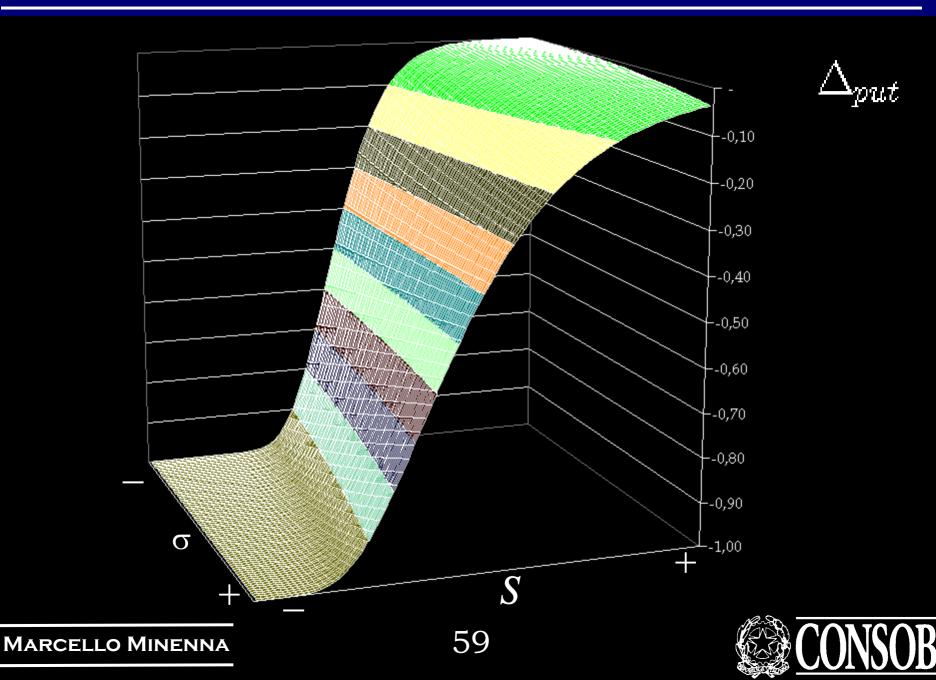
 $C_{t} = S_{t}N(d_{1}) - Ke^{-r(T-t)}N(d_{2})$ $P_{t} = Ke^{-r(T-t)}N(-d_{2}) - S_{t}N(-d_{1})$

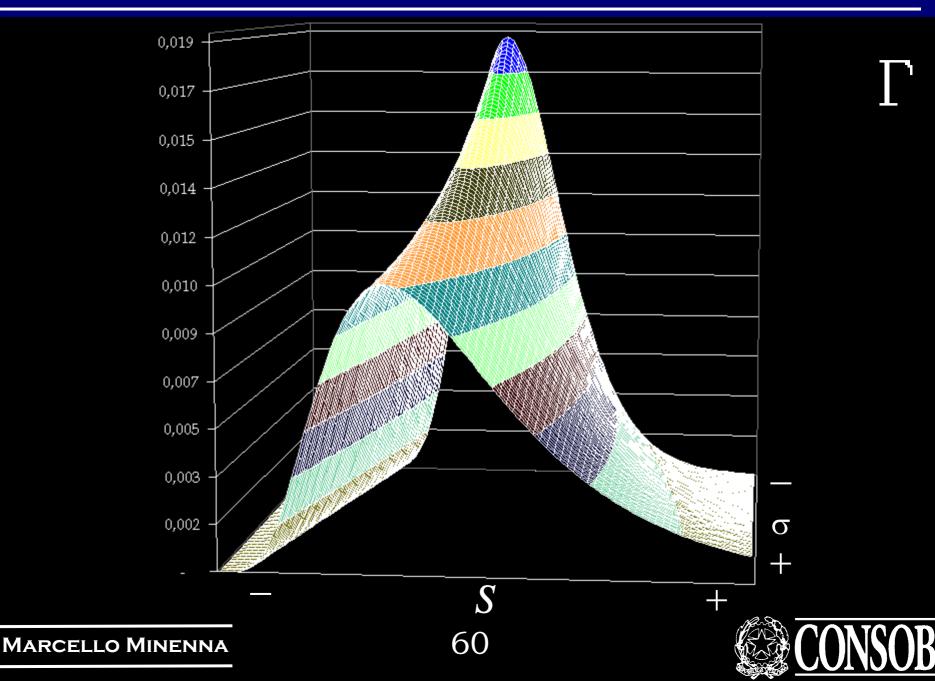
$$d_1 = \frac{\ln \frac{s_t}{K} + \left(r + \frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}}$$
$$d_2 = \frac{\ln \frac{s_t}{K} + \left(r - \frac{\sigma^2}{2}\right)(T-t)}{\sigma\sqrt{T-t}}$$

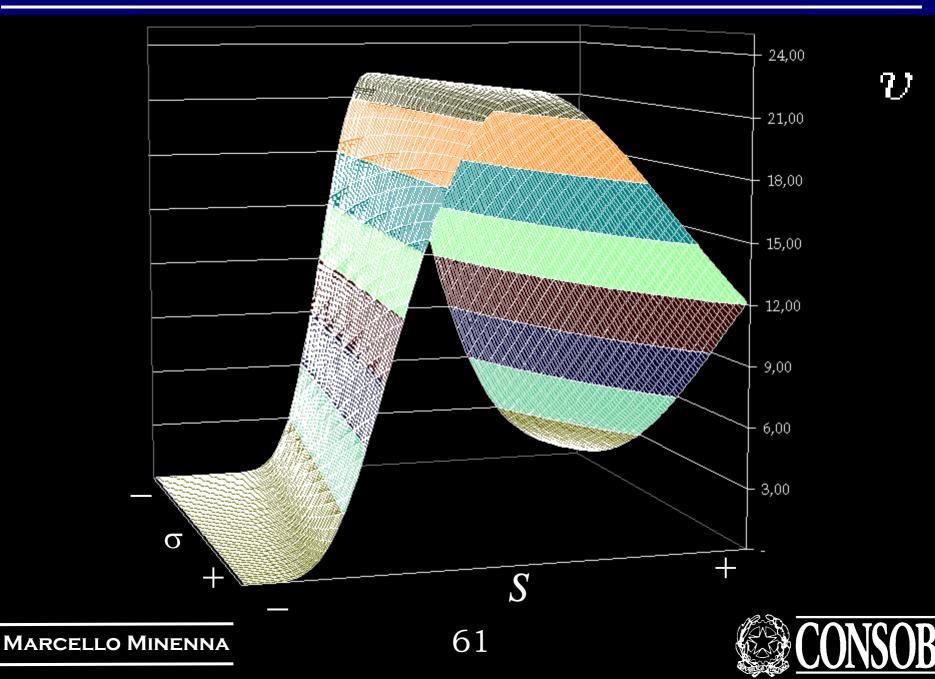
MARCELLO MINENNA

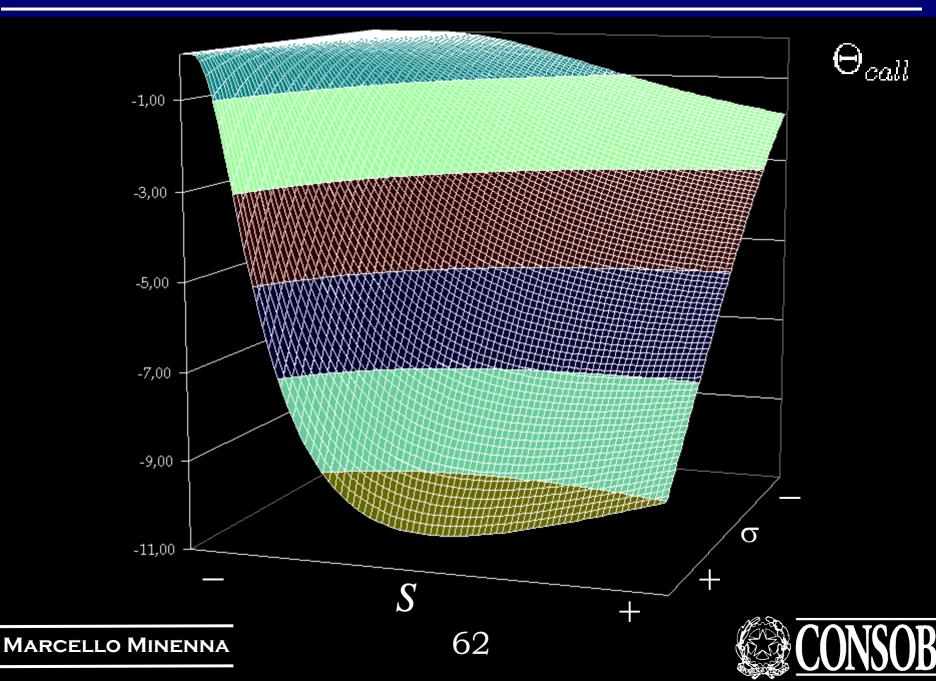
JK

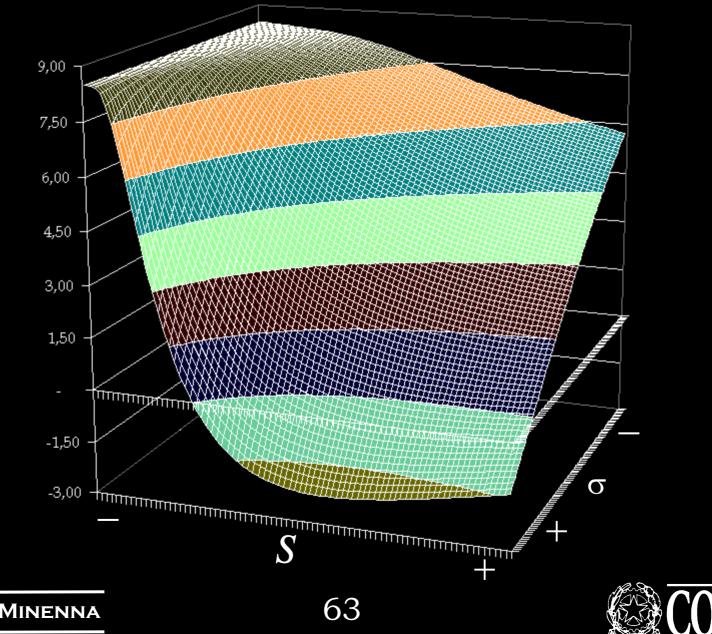

 $\Delta_{call} = N(d_1) \qquad \qquad \Delta_{put} = N(d_1) - 1$


$$\Gamma = \frac{N'(d_1)}{S\sigma\sqrt{T-t}}$$


$$v = S \cdot N'(d_1)\sqrt{T-t}$$


 $\Theta_{call} = (T-t)Ke^{-r(T-t)}N(d_2)$ $\Theta_{put} = -(T-t)Ke^{-r(T-t)}N(-d_2)$





 $\boldsymbol{?}$

R

GREEK LETTERS ARE ADDITIVE

PORFOLIO GREEK
$$=\sum\limits_i w_i$$
 GREEK

$$\sum_i w_i = 1$$

Δ HEDGING

COMPUTATION OF df BY MEANS OF A FIRST ORDER TAYLOR'S FORMULA

 $df \approx \Delta dS + o(dt)$

AT TIME T=0 SHORT 1 CALL

AT MATURITY THE OPTION IS IN - THE MONEY

Δ Hedging - short 1 call - IN — the money

Short 1000 call on 1 stock			Option and $\underline{\Lambda}$				∆ Portfolio			
			Q.	Δ						
						Stock to		Δ		
Time	Time to	STOCK	Opz.	call	Δ call	Buy/(Sell)	Warehouse	Stoc	Δ Stock	Tota1 ∆
Step	Expiration	PRICE	0p2.	Cam	Posit.			k	Posit.	position
0	0,2500	100,0	(1.000)	0,564115961	(564)	564	564	1	564	-
1	0,2375	104,0	(1.000)	0,624630657	(625)	61	625	1	625	-
2	0,2250	100,4	(1.000)	0,567671079	(568)	(57)	568	1	568	-
3	0,2125	93,8	(1.000)	0,449626897	(450)	(118)	450	1	450	-
4	0,2000	103,3	(1.000)	0,613419529	(613)	163	613	1	613	-
5	0,1875	121,6	(1.000)	0,850633639	(851)	238	851	1	851	-
б	0,1750	120,9	(1.000)	0,850534322	(851)	_	851	1	851	-
7	0,1625	120,5	(1.000)	0,853571891	(854)	3	854	1	854	-
8	0,1500	122,9	(1.000)	0,88234869	(882)	28	882	1	882	-
9	0,1375	129,0	(1.000)	0,931634606	(932)	50	932	1	932	-
10	0,1250	130,2	(1.000)	0,944999861	(945)	13	945	1	945	-
11	0,1125	126,8	(1.000)	0,935342021	(935)	(10)	935	1	935	-
12	0,1000	131,7	(1.000)	0,966714307	(967)	32	967	1	967	-
13	0,0875	139,1	(1.000)	0,989168909	(989)	22	989	1	989	-
14	0,0750	162,9	(1.000)	0,999121066	(999)	10	999	1	999	-
15	0,0625	165,4	(1.000)	0,999355248	(999)	-	999	1	999	-
16	0,0500	162,1	(1.000)	0,999494634	(999)	-	999	1	999	-
17	0,0375	162,1	(1.000)	0,999624853	(1.000)	1	1.000	1	1.000	-
18	0,0250	157,1	(1.000)	0,999750027	(1.000)	-	1.000	1	1.000	-
19	0,0125	148,4	(1.000)	0,999875008	(1.000)	-	1.000	1	1.000	-
20	0000,0	150,0	(1.000)	1	(1.000)	-	1.000	1	1.000	-

MARCELLO MINENNA

F

Δ Hedging - short 1 call - IN — the money

	D	elta Hedg	ging Cash Flow			1	Delta Hedg	ing portfo	olio "A" Value	
Stock	Option		Bank Replicating Portfolio				olio			
Dollars in Stock (flow)	Cash ez Shorting/Ezerci sing Option	Cash	Interest (flow)	Borrow (stock)	Hedging Revenue (cost)	Dollars in Stock (stock)	Bank	Portfolio Value	Option value	Unwind value
56.400	10.378	46.022		46.022		56.400	(46.022)	10.378	(10.378)	
6.344		6.344	28,8	52.395		64.997	(52.395)	12.602	(12.480)	122
(5.723)		(5.723)	32,8	46.704		57.032	(46.704)	10.327	(10.060)	267
(11.072)		(11.072)	29,2	35.662		42.223	(35.662)	6.562	(6.429)	133
16.833		16.833	22,3	52.517		63.304	(52.517)	10.787	(11.167)	(380)
28.940		28.940	32,8	81.490		103.479	(81.490)	21.989	(24.517)	(2.528)
-		-	50,9	81.541		102.880	(81.541)	21.339	(23.677)	(2.338)
361		361	51,0	81.953		102.901	(81.953)	20.948	(23.089)	(2.141)
3.442		3.442	51,2	85.446		108.417	(85.446)	22.971	(24.957)	(1.986)
6.452		6.452	53,4	91.952		120.274	(91.952)	28.322	(30.315)	(1.993)
1.692		1.692	57,5	93.702		123.026	(93.702)	29.324	(31.207)	(1.883)
(1.268)		(1.268)	58,6	92.493		118.532	(92.493)	26.039	(27.818)	(1.779)
4.216		4.216	57,8	96.766		127.392	(96.766)	30.626	(32.385)	(1.759)
3.060		3.060	60,5	99.886		137.543	(99.886)		(39.460)	(1.804)
1.629		1.629	62,4	101.578		162.729	(101.578)		(63.145)	· · ·
_			63,5	101.641		165.235	(101.641)		(65.609)	(2.015)
_		_	63,5	101.705		161.986	(101.705)		(62.317)	(2.036)
162		162	63,6	101.931		162.108	(101.931)		(62.235)	(2.057)
_		_	63,7	101.994		157.110	(101.994)		(57.196)	(2.080)
_		-	63,8	102.058		148.442	(102.058)		(48.486)	(2.102)
_	(100.000)	-	63,8	102.122	(2.122)		(102.122)	47.839	(49.961)	

MARCELLO MINENNA

68

OB

AT TIME T=0 SHORT 1 CALL

AT MATURITY THE OPTION IS OUT - THE MONEY

Δ HEDGING - SHORT 1 CALL - OUT – THE MONEY

Short 1000 call on 1 stock			Option and Δ				∆ Portfolio			
			Q.	Δ						
Time Step	Time to Expiration	STOCK PRICE	Opz.	call	Δ call Posit.	Stock to Buy/(Sell)	Warehouse	∆ Stoc k	Δ Stock Posit.	Tota1∆ position
0	0,2500	100,0	(1.000)	0,564115961	(564)	564	564	1	564	-
1	0,2375	107,1	(1.000)	0,669595731	(670)	106	670	1	670	-
2	0,2250	98,7	(1.000)	0,539965684	(540)	(130)	540	1	540	-
3	0,2125	98,6	(1.000)	0,535439952	(535)	(5)	535	1	535	-
4	0,2000	98,1	(1.000)	0,52274553	(523)	(12)	523	1	523	-
5	0,1875	100,9	(1.000)	0,572217366	(572)	49	572	1	572	-
6	0,1750	103,8	(1.000)	0,623229667	(623)	51	623	1	623	-
7	0,1625	89,9	(1.000)	0,346231134	(346)	(277)	346	1	346	_
8	0,1500	83,0	(1.000)	0,201859233	(202)	(144)	202	1	202	-
9	0,1375	77,9	(1.000)	0,110027376	(110)	(92)	110	1	110	-
10	0,1250	74,6	(1.000)	0,061492554	(61)	(49)	61	1	61	-
11	0,1125	76,9	(1.000)	0,072830535	(73)	12	73	1	73	-
12	0,1000	70,2	(1.000)	0,016432088	(16)	(57)	16	1	16	-
13	0,0875	68,9	(1.000)	0,007800759	(8)	(8)	8	1	8	-
14	0,0750	69,5	(1.000)	0,005051823	(5)	(3)	5	1	5	-
15	0,0625	69,9	(1.000)	0,002681681	(3)	(2)	3	1	3	-
16	0,0500	64,8	(1.000)	7,23394E-05	-	(3)	-	1	-	-
17	0,0375	62,8	(1.000)	1,05616E-06	-	-	-	1	-	-
18	0,0250	63,0	(1.000)	3,36141E-09	-	-	-	1	-	-
19	0,0125	64,5	(1.000)	2,6642E-15	-	-	-	1	-	-
20	0,0000	66,7	(1.000)	0	-	-	-	1	-	-

MARCELLO MINENNA

)B

Δ Hedging - short 1 call - OUT — the money

	D	ging Cash Flow		Delta Hedging portfolio "A" Value						
Stock	Option	Bank				Replic	ating Portf			
Dollars in Stock (Flow)	Cash ex Shorting/Exerci sing Option	Cash	Interest (Flow)	Borrow (stock)	Hedging Revenue (cost)	Dollars in Stock (stock)	Bank	Portfolio Value	O pt ion value	Unwind value
56.400	10.378	46.022		46.022		56.400	(46.022)	10.378	(10.378)	-
11.355		11.355	28,8	57.406		71.772	(57.406)	14.366	(14.505)	(139)
(12.837)		(12.837)	35,9	44.605		53.324	(44.605)	8.719	(9.141)	(422)
(493)		(493)	27,9	44.140		52.762	(44.140)	8.622	(8.790)	(168)
(1.177)		(1.177)	27,6	42.991		51.282	(42.991)	8.291	(8.201)	91
4.945		4.945	26,9	47.962		57.721	(47.962)	9.759	(9.464)	295
5.294		5.294	30,0	53.286		64.674	(53.286)	11.388	(10.883)	504
(24.908)		(24.908)	33,3	28.411		31.113	(28.411)	2.702	(3.783)	(1.081)
(11.953)		(11.953)	17,8	16.476		16.768	(16.476)	292	(1.662)	(1.370)
(7.166)		(7.166)	10,3	9.321		8.568	(9.321)	(753)	(711)	(1.465)
(3.655)		(3.655)	5,8	5.672		4.550	(5.672)	(1.122)	(328)	(1.450)
923		923	3,5	6.598		5.615	(6.598)	(983)	(392)	(1.376)
(4.001)		(4.001)	4,1	2.601		1.123	(2.601)	(1.478)	(62)	(1.540)
(551)		(551)	1,6	2.051		551	(2.051)	(1.499)	(25)	(1.525)
(208)		(208)	1,3	1.844		347	(1.844)	(1.497)	(15)	(1.511)
(140)		(140)	1,2	1.705		210	(1.705)	(1.496)	(7)	(1.502)
(195)		(195)	1,1	1.512		-	(1.512)	(1.512)	(0)	(1.512)
-		-	0,9	1.513		-	(1.513)	(1.513)		(1.513)
-		-	0,9	1.514		-	(1.514)	(1.514)		(1.514)
-		-	0,9	1.515		-	(1.515)	(1.515)	-	(1.515)
_	-	_	0,9	1.516	(1.516)	-	(1.516)	(1.516)	-	(1.516)

MARCELLO MINENNA

B

$\Delta - \Gamma$ hedging

COMPUTATION OF df BY MEANS OF A SECOND ORDER TAYLOR'S FORMULA

$$df pprox \Delta dS + rac{1}{2}\Gamma dS^2 + o(dt)$$

AT TIME T=0 SHORT 1 CALL

Let us build our portfolio in order to be Δ neutral

AT TIME T=0 SHORT 1 CALL

Let us build our portfolio in order to be Δ neutral

How can we build our portfolio in order to be also Γ neutral

$\Delta-\Gamma \text{ hedging}$

... LET US FOLLOW AN ITERATIVE LOGIC

PORTFOLIO \triangle NEUTRAL

PORTFOLIO

RECOMPOSITION TOWARDS (A NEUTRALITY

... THIS LOGIC IS CORRECT BECAUSE A STOCK'S Γ IS O

... THIS LOGIC IS CORRECT BECAUSE A STOCK'S Γ is 0

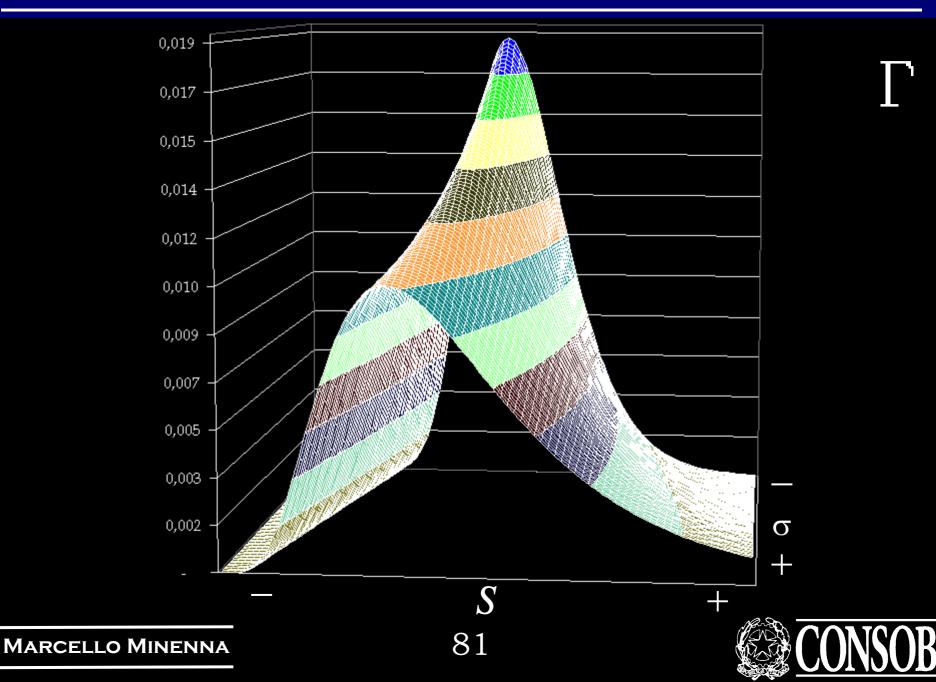
... IN ORDER TO LET OUR PORTFOLIO BE ALSO Γ NEUTRAL ...

... WE NEED ANOTHER OPTION

... AN OPTION THAT MATCHES THE SHORTED OPTION'S Γ

... AN OPTION THAT MATCHES THE SHORTED OPTION'S Γ

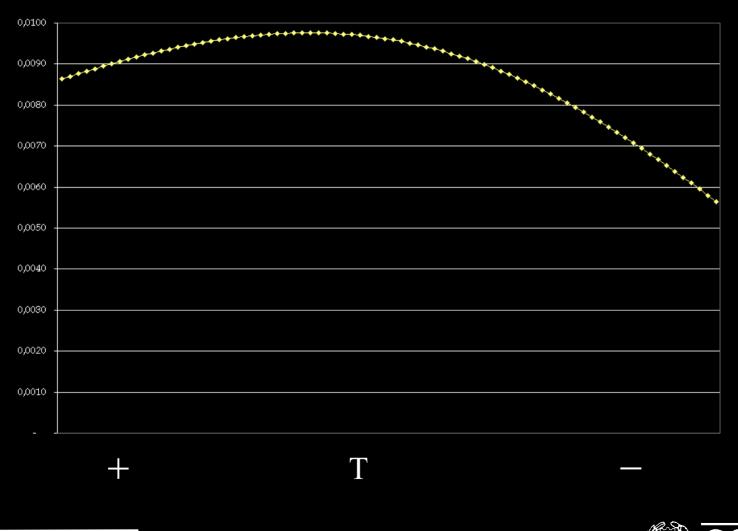
... AND THAT WOULD NOT CAUSE TOO MANY 'DEFORMATIONS' TO THE SHORTED OPTION'S DELTA



... SOME REMARKS

ATM OPTIONS HAVE THE BIGGEST Γ

INVESTOR EDUCATION

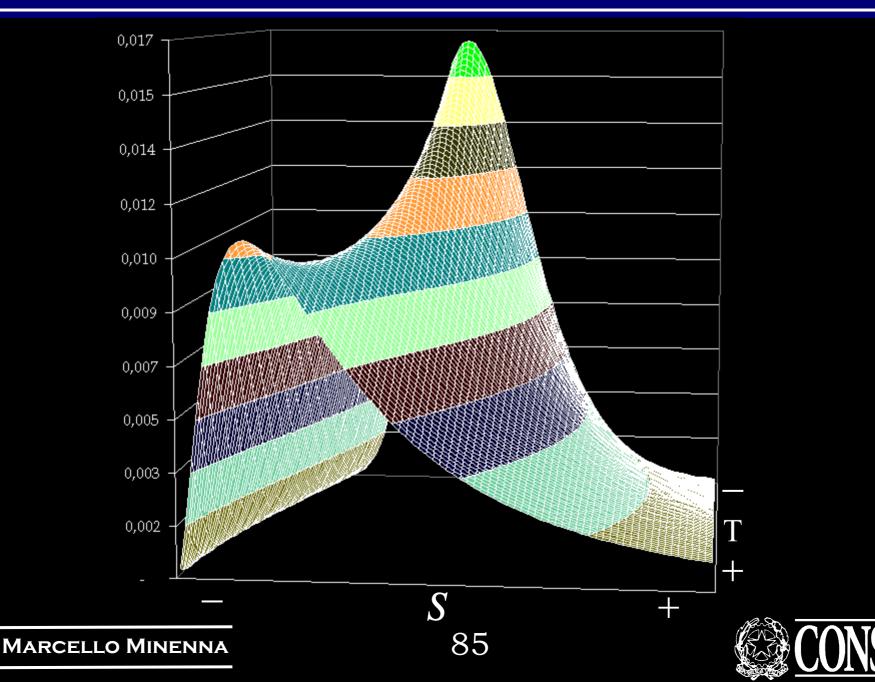


... SOME REMARKS

☐ OF AN OPTION FUNDAMENTALLY DECREASES AS TIME ELAPSES

INVESTOR EDUCATION

MARCELLO MINENNA


NSOB

... SOME REMARKS

□ UNDERGOES SOME
 DEFORMATIONS
 RELATED TO
 MONEYNESS AS TIME
 VARIES

INVESTOR EDUCATION

)B

$\Delta - \Gamma$ hedging

ATM OPTIONS HAVE THE BIGGEST Γ ☐ OF AN OPTION
FUNDAMENTALLY
DECREASES AS TIME
ELAPSES

Γ UNDERGOES SOME DEFORMATIONS RELATED TO MONEYNESS AS TIME VARIES

LET US SELECT SHORT TERM AND ATM OPTIONS

$\Delta - \Gamma$ hedging

ATM OPTIONS HAVE THE BIGGEST Γ ☐ OF AN OPTION
FUNDAMENTALLY
DECREASES AS TIME
ELAPSES

Γ UNDERGOES SOME DEFORMATIONS RELATED TO MONEYNESS AS TIME VARIES

LET US SELECT SHORT TERM AND ATM OPTIONS

LET US DINAMICALLY RECOMPOSE THE PORTFOLIO WITH LONG TERM AND ATM

OPTIONS 87

LET US SELECT SHORT TERM AND ATM OPTIONS

TRADE-OFF:

TRANSATION COSTS
TRADING STRATEGIES
RISK LIMITS

LET US DINAMICALLY RECOMPOSE THE PORTFOLIO WITH LONG TERM AND ATM OPTIONS

TIME T=0

1 SHORT CALL (W) LET US DEFINE A \triangle NEUTRAL PORTFOLIO 'A' 1 LONG OPTION (Z)

$$\Delta_{A=0}$$

$$\Gamma_{A} = N * \Gamma_{w}$$

TIME T=0

PORTFOLIO B = PORTFOLIO A + N * Z

... WHAT ABOUT THE GREEK LETTERS OF B?

$\Delta - \Gamma$ HEDGING TROUGH FORMULAS

TIME T=0

$\Delta_{\mathsf{B}} = \Delta_{\mathsf{A}^+} \mathsf{N} \Delta_{\mathsf{Z}}$

 $\Delta_{B} = N \Delta_{Z}$

$\Delta - \Gamma$ HEDGING TROUGH FORMULAS

TIME T=0

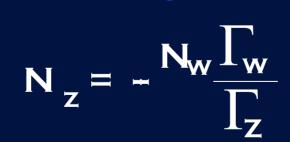
$\Gamma_{\rm B} = \Gamma_{\rm A} + N \Gamma_{\rm Z}$

$\Gamma_{\rm B} = N_{\rm W}\Gamma_{\rm W} + N_{\rm Z}\Gamma_{\rm Z}$

... IN ORDER TO OBTAIN $\Gamma_{\rm B}=0$

$\Gamma_{\rm B} = N_{\rm W} \Gamma_{\rm W} + N_{\rm Z} \Gamma_{\rm Z}$

$0 = \mathbf{N}_{\mathbf{w}} \Gamma_{\mathbf{w}} + \mathbf{N}_{\mathbf{z}} \Gamma_{\mathbf{z}}$



... IN ORDER TO OBTAIN $\Gamma_{\rm B}=0$

 $\Gamma_{\rm B} = N_{\rm W} \Gamma_{\rm W} + N_{\rm Z} \Gamma_{\rm Z}$

 $0 = N_w \Gamma_w + N_z \Gamma_z$

... THAT IS IN ORDER TO HAVE A Γ NEUTRAL PORTFOLIO

YOU SHOULD BUY $N_z = N_z$ OPTIONS Z

-7

... BUT IT IS NOT THE WHOLE STORY

The new portfolio B will not be Δ neutral

 $\Delta_{B} = N \Delta_{Z}$

... BUT IT IS NOT THE WHOLE STORY

The new portfolio B will not be Δ neutral

 $\Delta_{\mathsf{B}} = \mathsf{N} \Delta_{\mathsf{Z}}$

LET US REBALANCE THE PORTFOLIO IN ORDER TO OBTAIN THIS RESULT:

$$\Delta_{c} = \mathbf{0}$$

KURPIEL & RONCALLI (1998)

 $\Delta-\Gamma$ hedging referred to time horizons of 5, 1, 1/2 days does not supply substantial advantages in comparison with Δ hedging

TIME T=0

SHORT 1 CALL (W) LET US DEFINE A PORTFOLIO \triangle NEUTRAL 'A' LONG 1 CALL (Z) WITH $T_z > T_w$; $K_z > K_w$

$\Delta - \Gamma$ hedging — an example

LET US HOLD THE OPTION 'Z' UNTIL MATURITY

AT MATURITY THE OPTION 'W' IS IN - THE MONEY

$\Delta - \Gamma$ Hedging - Short 1 Call - In — The money

Short 1	1000 call on 1	l stock	С	ption and Δ			Stock and	Δ		∆ Portfolio
			Q.	Δ						
Time Step	Time to E×piration	STOCK PRICE	Opz.	call	Δ call Posit.	Stock to Buy/(Sell)	Warehouse	∆ Stoc k	Δ Stock Posit.	Tota1∆ position
0	0,2500	100,0	(1.000)	0,564115961	(564)	564	564	1	564	-
1	0,2375	102,0	(1.000)	0,593648325	(594)	30	594	1	594	-
2	0,2250	101,9	(1.000)	0,591419714	(591)	(3)	591	1	591	_
3	0,2125	104,3	(1.000)	0,629740916	(630)	39	630	1	630	_
4	0,2000	105,9	(1.000)	0,655754583	(656)	26	656	1	656	-
5	0,1875	109,6	(1.000)	0,713190152	(713)	57	713	1	713	-
б	0,1750	109,2	(1.000)	0,710239361	(710)	(3)	710	1	710	-
7	0,1625	112,7	(1.000)	0,765213522	(765)	55	765	1	765	-
8	0,1500	112,1	(1.000)	0,762277787	(762)	(3)	762	1	762	-
9	0,1375	114,0	(1.000)	0,795097794	(795)	33	795	1	795	-
10	0,1250	116,0	(1.000)	0,828994045	(829)	34	829	1	829	-
11	0,1125	103,8	(1.000)	0,629405621	(629)	(200)	629	1	629	-
12	0,1000	97,7	(1.000)	0,482184607	(482)	(147)	482	1	482	-
13	0,0875	99,4	(1.000)	0,522140486	(522)	40	522	1	522	_
14	0,0750	92,6	(1.000)	0,31747734	(317)	(205)	317	1	317	-
15	0,0625	93,2	(1.000)	0,315146981	(315)	(2)	315	1	315	-
16	0,0500	98,6	(1.000)	0,47968815	(480)	165	480	1	480	-
17	0,0375	101,6	(1.000)	0,591235554	(591)	111	591	1	591	-
18	0,0250	104,7	(1.000)	0,737926695	(738)	147	738	1	738	-
19	0,0125	108,3	(1.000)	0,927247903	(927)	189	927	1	927	-
20	0,0000	120,1	(1.000)	1	(1.000)	73	1.000	1	1.000	-

$\Delta-\Gamma$ hedging - short 1 call - In — the money

	Portfolio \mathbf{B} = Portfolio \mathbf{A} + II Option								
Γ Portfolio "A"	Γ Portfolio "B"								
Γ portafolio =		II Option			T	-			
Γ I Option* n.az. Underlying	II Option value	đ1	Γ II $_{Option}$	n. II Option Buy	Γ ΙΙ Option Tot	Γ portfolio "B"	Tota1∆ position		
(15,70)	8,532035235	-0,021383	0,015528736	1.011	15,70263	-	496		
(15,56)		0,047578	0,015593814	998	15,5621	-	517		
(16,03)		0,036606	0,016022921	1.000	16,02778	_	514		
(15,66)	9,931752237	0,128265	0,015959581	981	15,65784	-	539		
(15,49)	10,53940858	0,189663	0,016016933	967	15,49118	-	555		
(14,29)	12,45786614	0,339697	0,015333912	932	14,29063	-	589		
(14,93)	11,86551334	0,322986	0,015990036	934	14,92771	_	584		
(13,46)	13,85860752	0,477377	0,015071693	893	13,45713	-	609		
(14,19)	13,09617795	0,457377	0,015878178	894	14,18792	-	603		
(13,38)	14,05627045	0,55154	0,015501083	863	13,38009	-	611		
(12,33)	15,14677459	0,657847	0,014924919	826	12,32786	-	614		
(21,67)	6,98437869	0,050779	0,021689614	999	21,66644	-	519		
(25,78)	3,874139145	-0,319605	0,023112366	1.115	25,7778	-	417		
(27,07)	4,158819334	-0,242518	0,024624308	1.099	27,07001	-	444		
(28,11)	1,658383337	-0,754865	0,021897225	1.284	28,10892	-	289		
(30,49)	1,48799424	-0,780121	0,023041342	1.323	30,48717	-	288		
(36,12)	2,582609126	-0,418841	0,029625236	1.219	36,11725	-	411		
(39,46)	3,192341541	-0,217637	0,034269965	1.151	39,45535	-	476		
(39,31)	3,991776369	0,037942	0,039296274	1.000	39,31016	-	515		
(22,82)	5,305213614	0,438792	0,042324222	539	22,82201	-	361		
-	15,20266822	2,445826	0,002983796	-	-		-		

MARCELLO MINENNA

B

$\Delta - \Gamma$ hedging - short 1 call - In — the money

	Portfolio "C"= Port. "B" + Stock f(& hedge of "B")										
	∆ Port. "B"	Stoc	Stock and A Portfolio								
	Tota1∆ position	Stock to Buy/(Sell)	Warehouse	∆ Sto ck	∆ Stock Posit.	Tota1 ∆ position					
	496	(496)	(496)	1	(496)	-					
	517	(21)	(517)	1	(517)	-					
	514	3	(514)	1	(514)	-					
	539	(25)	(539)	1	(539)	-					
	555	(16)	(555)	1	(555)	-					
	589	(34)	(589)	1	(589)	-					
	584	5	(584)	1	(584)	-					
	609	(25)	(609)	1	(609)	-					
	603	6	(603)	1	(603)						
	611	(8)	(611)	1	(611)						
	614	(3)	(614)	1	(614)						
	519	95	(519)	1	(519)						
	417	102	(417)	1	(417)						
	444	(27)	(444)	1	(444)						
	289	155	(289)	1	(289)						
	288	1	(288)	1	(288)						
	411	(123)	(411)	1	(411)						
	476	(65)	(476)	1	(476)						
	515	(39)	(515)	1	(515)						
	361	154	(361)	1	(361)	-					
	-	361	-	1	-	-					
_				1	$\cap \mathcal{O}$						

MARCELLO MINENNA

103

$\Delta-\Gamma$ hedging - short 1 call - In — the money

quantitative composition of the "C" Portfolio, value of $\blacktriangle \& \Gamma$										
Sto	ock	Short Opt.	Option	n for F	Delta e Gamma					
Buy/sell	Warehouse	Short Opt.	Buytsell	Warehouse	∆ portfolio ⊂	Γ portfolio ⊂				
68	68	(1.000)	1.011	1.011	-	-				
9	77	(1.000)	(13)	998	-	-				
-	77	(1.000)	2	1.000	-	-				
14	91	(1.000)	(19)	981	-	-				
10	101	(1.000)	(14)	967	-	-				
23	124	(1.000)	(35)	932	-	-				
2	126	(1.000)	2	934	-	-				
30	156	(1.000)	(41)	893	-	-				
3	159	(1.000)	1	894	-	-				
25	184	(1.000)	(30)	863	-	-				
31	215	(1.000)	(37)	826	-	-				
(105)	110	(1.000)	173	999	-	-				
(45)	65	(1.000)	116	1.115	-	-				
13	78	(1.000)	(16)	1.099	-	-				
(50)	28	(1.000)	184	1.284	-	-				
(1)	27	(1.000)	39	1.323	-	-				
42	69	(1.000)	(104)	1.219	-	-				
46	115	(1.000)	(68)	1.151	-	-				
108	223	(1.000)	(151)	1.000	-	-				
343	566	(1.000)	(461)	539	-	-				
434	1.000	(1.000)	(539)	-	-					

$\Delta - \Gamma$ hedging - short 1 call - In — the money

Delta Gamma Hedging Cash Flow									
Stock	Option	Opt. for Γ		Bank					
Dollars in Stock (Flow)	Cash ex Shorting/Ex ercising Option	Dollars in Option (Flow)	Cash	Interest (Flow)	Borrow (stock)	Hedging Revenue (cost)			
6.800	10.378	8.628	5.050		5.050				
918		(122)	795	3,2	5.848				
-		21	21	3,7	5.873				
1.460		(191)	1.269	3,7	7.146				
1.059		(147)	912	4,5	8.063				
2.521		(439)	2.082	5,0	10.150				
218		19	237	6,3	10.394				
3.382		(564)	2.818	6,5	13.218				
336		9	345	8,3	13.572				
2.849		(427)	2.422	8,5	16.003				
3.595		(563)	3.032	10,0	19.044				
(10.897)		1.208	(9.689)	11,9	9.367				
(4.396)		451	(3.945)	5,9	5.427				
1.292		(67)	1.226	3,4	6.656				
(4.628)		306	(4.322)	4,2	2.338				
(93)		59	(34)	1,5	2.305				
4.142		(269)	3.873	1,4	6.180				
4.675		(217)	4.459	3,9	10.643				
11.312		(603)	10.709	6,7	21.358				
37.133		(2.446)	34.686	13,4	56.058				
52.139	(100.000)	(8.198)	43.941	35,0	100.034	34			

 $\Delta - \Gamma$ hedging — an example

LET US HOLD THE 'Z' OPTION UNTIL MATURITY

AT MATURITY THE OPTION 'W' IS OUT – THE MONEY

Δ Hedging - short 1 call - out — the money

Short 1	.000 call on 1	l stock	Oj	ption and∆			Stock and	IΔ		∆Portfolio
			Q.	Δ						
Time Step	Time to Expiration	STOCK PRICE	Opz.	call	Δ call Posit.	Stock to Buy/(Sell)	Warehouse	∆ Stoc k	Δ Stock Posit.	Tota1∆ position
0	0,2500	100,0	(1.000)	0,564115961	(564)	564	564	1	564	-
1	0,2375	106,1	(1.000)	0,654729124	(655)	91	655	1	655	-
2	0,2250	104,2	(1.000)	0,627365416	(627)	(28)	627	1	627	-
3	0,2125	104,9	(1.000)	0,639023423	(639)	12	639	1	639	-
4	0,2000	99,0	(1.000)	0,540155862	(540)	(99)	540	1	540	-
5	0,1875	97,9	(1.000)	0,517323489	(517)	(23)	517	1	517	-
6	0,1750	93,3	(1.000)	0,422696428	(423)	(94)	423	1	423	-
7	0,1625	87,2	(1.000)	0,292594163	(293)	(130)	293	1	293	_
8	0,1500	79,5	(1.000)	0,144979436	(145)	(148)	145	1	145	-
9	0,1375	79,7	(1.000)	0,135689732	(136)	(9)	136	1	136	-
10	0,1250	82,2	(1.000)	0,160714285	(161)	25	161	1	161	-
11	0,1125	87,2	(1.000)	0,239512401	(240)	79	240	1	240	_
12	0,1000	78,3	(1.000)	0,074592914	(75)	(165)	75	1	75	_
13	0,0875	73,1	(1.000)	0,021769947	(22)	(53)	22	1	22	_
14	0,0750	79,2	(1.000)	0,05288132	(53)	31	53	1	53	_
15	0,0625	79,0	(1.000)	0,035901243	(36)	(17)	36	1	36	-
16	0,0500	84,3	(1.000)	0,072705946	(73)	37	73	1	73	-
17	0,0375	84,3	(1.000)	0,044170375	(44)	(29)	44	1	44	-
18	0,0250	78,1	(1.000)	0,001029286	(1)	(43)	1	1	1	-
19	0,0125	74,7	(1.000)	1,09986E-07	-	(1)	-	1	-	-
20	0,0000	71,5	(1.000)	0	-	-	-	1	-	-

Δ HEDGING - SHORT 1 CALL - OUT — THE MONEY

	Portfolio \mathbf{B} = Portfolio \mathbf{A} + II Option									
Γ Portfolio "A"			Γ Portfolio	"B"			∆ Port. "B"			
Γ portafolio =		II Option			_	_				
Γ I Option 'n.az. Underlying	II Option va lue	đ1	Γ II $_{\mathrm{Option}}$:	n. II Option Buy	Γ ΙΙ Option Tot	Γ jportfolio "B"	Total∆ position			
(15,70)	8,532035235	-0,021383	0,015528736	1.011	15,70263	-	496			
(14,20)	11,50385049	0,20525	0,014695255	966	14,2025	-	560			
(15,26)	10,14867469	0,128089	0,015552089	982	15,26498	-	540			
(15,44)	10,26284595	0,152333	0,015815246	976	15,43546	-	546			
(17,89)	6,976736039	-0,102274	0,017351704	1.031	17,88561	-	472			
(18,76)	6,201205895	-0,164556	0,017939034	1.046	18,7625	-	454			
(20,03)	4,133050684	-0,402387	0,018178071	1.102	20,02836	-	378			
(19,53)	2,172498556	-0,748035	0,016498971	1.184	19,53189	-	269			
(14,80)	0,749388353	-1,247614	0,011414948	1.296	14,79729	-	137			
(14,73)	0,65845741	-1,293547	0,01117497	1.318	14,73167	-	129			
(16,78)	0,796600892	-1,196629	0,01277235	1.314	16,78149	-	152			
(21,23)	1,339000259	-0,935054	0,016697048	1.271	21,22699	-	222			
(11,38)	0,262019159	-1,638052	0,007932318	1.435	11,38223	-	73			
(4,81)	0,056296405	-2,183316	0,003179027	1.513	4,808971	-	22			
(9,95)	0,15339148	-1,813143	0,006580083	1.512	9,948043	-	53			
(7,99)	0,091417259	-1,984494	0,005141739	1.553	7,985569	-	37			
(14,67)	0,195110623	-1,67581	0,009293286	1.578	14,66809	-	74			
(11,44)	0,101824554	-1,893685	0,007045	1.624	11,44363	-	47			
(0,56)	0,002827193	-2,998713	0,000588448	952	0,560244	-	1			
(00,00)	1,29371E-05	-4,25525	7,90033E-06	18	0,000141	-	-			
-	0	-6,843081	6,77257E-12	-	-	-	-			

Δ HEDGING - SHORT 1 CALL - OUT — THE MONEY

Total Δ positionStock to Buy/(Sell)Warehouse Δ Sto ck Δ Sto ckTotal Δ posit.496(496)(496)1(496)-560(64)(560)1(560)-54020(540)1(540)-546(6)(546)1(540)-47274(472)1(472)-45418(454)1(454)-37876(378)1(378)-269109(269)1(269)-137132(137)1(137)-1298(129)1(129)-152(23)(152)1(122)-73149(73)1(73)-2251(22)1(22)-53(31)(53)1(53)-		Portfolio "C"= Port. "B"+ Stock f(& hedge of "B")						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A Port. "B"	Stock and & Portfolio				▲ Portfolio "C"		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Warehouse	Sto				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	496	(496)	(496)	1	(496)	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	560	(64)	(560)	1	(560)	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	540	20	(540)	1	(540)	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	546	(6)	(546)	1	(546)	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	472	74	(472)	1	(472)	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	454	18	(454)	1	(454)	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	378	76	(378)	1	(378)	-		
129 8 (129) 1 (129) - 152 (23) (152) 1 (152) - 222 (70) (222) 1 (222) - 773 149 (73) 1 (73) - 222 51 (22) 1 (222) - 733 149 (73) 1 (73) - 223 51 (22) 1 (22) - 53 (31) (53) 1 (53) -	269	109	(269)	1	(269)	-		
152 (23) (152) 1 (152) - 222 (70) (222) 1 (222) - 73 149 (73) 1 (73) - 222 51 (22) 1 (222) - 53 (31) (53) 1 (53) -	137	132	(137)	1	(137)	-		
222 (70) (222) 1 (222) - 73 149 (73) 1 (73) - 22 51 (22) 1 (22) - 53 (31) (53) 1 (53) -	129	8	(129)	1	(129)	-		
73 149 (73) 1 (73) - 22 51 (22) 1 (22) - 53 (31) (53) 1 (53) -	152	(23)	(152)	1	(152)	-		
22 51 (22) 1 (22) - 53 (31) (53) 1 (53) -		(70)	(222)	1	(222)	-		
53 (31) (53) 1 (53) -	73	149	(73)	1	(73)	-		
		51	(22)	1	(22)	-		
	53	(31)	(53)	1	(53)	-		
	37	16	(37)	1	(37)	-		
74 (37) (74) 1 (74) -		(37)	(74)	1	(74)	-		
47 27 (47) 1 (47) -	47	27	(47)	1	(47)	-		
1 46 (1) 1 (1) -	1	46	(1)	1	(1)	-		
- 1 - 1	-	1	-	1	-	-		
1	-	-	-	1	-	-		

MARCELLO MINENNA

109

Δ Hedging - short 1 call - out — the money

quantitative composition of the "C" Portfolio, value of $h \approx \Gamma$							
Stock		Short Opt.	pt. Option for Γ		Delta e Gamma		
Buy/sell	Warehouse	Short Opt.	Buylsell	Warehouse	∆ portfolio ⊂	Γ portfolio	
68	68	(1.000)	1.011	1.011	-	-	
27	95	(1.000)	(45)	966	-	-	
(8)	87	(1.000)	15	982	-	-	
б	93	(1.000)	(6)	976	-	-	
(25)	68	(1.000)	55	1.031	-	-	
(5)	63	(1.000)	15	1.046	-	-	
(18)	45	(1.000)	56	1.102	-	-	
(21)	24	(1.000)	82	1.184	-	-	
(16)	8	(1.000)	112	1.296	-	-	
(1)	7	(1.000)	22	1.318	-	-	
2	9	(1.000)	(4)	1.314	-	-	
9	18	(1.000)	(43)	1.271	-	-	
(16)	2	(1.000)	164	1.435	-	-	
(2)	-	(1.000)	78	1.513	-	-	
-	-	(1.000)	(1)	1.512	-	-	
(1)	(1)	(1.000)	41	1.553	-	-	
-	(1)	(1.000)	25	1.578	-	-	
(2)	(3)	(1.000)	46	1.624	-	-	
3	-	(1.000)	(672)	952	-	-	
-	-	(1.000)	(934)	18	-	-	
-	-	(1.000)	(18)	-	-	-	

Δ Hedging - short 1 call - out — the money

Delta Gamma Hedging Cash Flow						
Stock	Option	Opt. for Γ	Bank			
Dollars in Stock (Flow)	Cash ez Shorting/Eze rcising Option	Dollars in Option (Flow)	Cash	Interest (Flow)	Borrow (stock)	Hedging Revenue (cost)
6.800	10.378	8.628	5.050		5.050	
2.864		(515)	2.349	3,2	7.402	
(833)		153	(680)	4,6	6.727	
629		(57)	572	4,2	7.303	
(2.476)		382	(2.093)	4,6	5.214	
(490)		94	(396)	3,3	4.822	
(1.680)		231	(1.449)	3,0	3.376	
(1.832)		178	(1.654)	2,1	1.725	
(1.272)		84	(1.188)	1,1	538	
(80)		14	(65)	0,3	473	
164		(3)	161	0,3	634	
785		(57)	728	0,4	1.363	
(1.253)		43	(1.210)	0,9	153	
(146)		4	(142)	0,1	11	
-		(0)	(0)	0,0	11	
(79)		4	(75)	0,0	(64)	
_		5	5	(0,0)	(59)	
(169)		5	(164)	(0,0)	(223)	
234		(2)	232	(0,1)	9	
-		(0)	(0)	0,0	9	
-	-	-	-	0,0	9	(9)

MARCELLO MINENNA

F

$\Delta - \Gamma - \upsilon$ hedging

Computation of df by means of a second order Taylor's formula, paying attention to volatility

$$df pprox \Delta dS + rac{1}{2}\Gamma dS^2 + rac{\partial f}{\partial \sigma} d\sigma + o(dt)$$

AT TIME T=0 SHORT 1 CALL

Let us build our portfolio in order to be Δ neutral

AT TIME T=0 SHORT 1 CALL

Let us build our portfolio in order to be Δ neutral

How can we build our portfolio in order to be also $\Gamma-\upsilon$ neutral

... LET US FOLLOW AN ITERATIVE LOGIC

 \triangle **NEUTRAL PORTFOLIO**

RECOMPOSITION TOWARDS (A NEUTRALITY

□ NEUTRAL
PORTFOLIO

MARCELLO MINENNA

U NEUTRAL PORTFOLIO

115

... THIS LOGIC IS NOT CORRECT

?

... IF Γ -U of a stock is 0 ... unfortunately the option's Γ is not 0

$\Delta - \Gamma - \upsilon \text{ hedging}$

... THIS LOGIC IS NOT CORRECT

... if $\Gamma - U$ of a stock is 0

2

... UNFORTUNATELY THE OPTION'S Γ IS NOT O

... WE NEED ANOTHER OPTION

117

... Then we want to obtain a jointly $\Gamma - \upsilon$ neutral portfolio

... OTHERWISE WE START A LOOP WITHOUT SOLUTION

 $\Delta - \Gamma - \upsilon \text{ hedging}$

... IT FOLLOWS THE 'VICIOUS' LOOP

 $\triangle \mathbf{NEUTRAL}$ PORTFOLIO

RECOMPOSITION TOWARDS (A NEUTRALITY

 Γ **NEUTRAL PORTFOLIO**

U NEUTRAL PORTFOLIO

MARCELLO MINENNA

119

 $\Delta - \Gamma - \upsilon \text{ hedging}$

... IT FOLLOWS THE 'VIRTUOUS' LOOP

 \triangle NEUTRAL PORTFOLIO

RECOMPOSITION TOWARDS (A NEUTRALITY

JOINT USE OF THE 2 OPTIONS

Γ -U Neutral portfolio

MARCELLO MINENNA

120

... WHAT KIND OF OPTIONS?

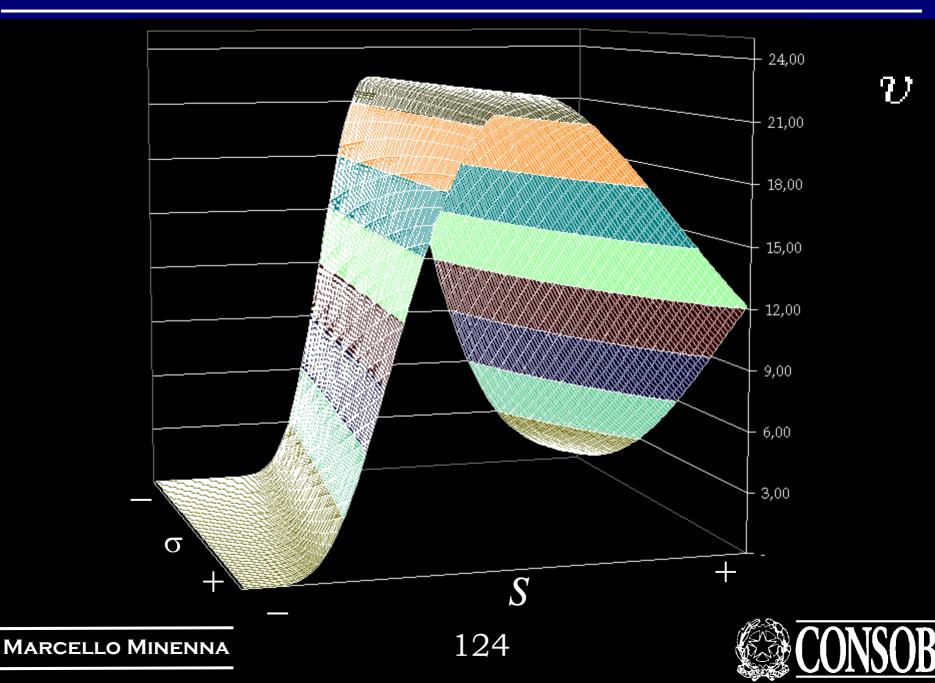
... AN OPTION THAT MATCHES THE Γ -U 'SHORTED' OPTION

... WHAT KIND OF OPTIONS?

... AN OPTION THAT MATCHES THE Γ -U 'SHORTED' OPTION

... AND THAT DOES NOT CAUSE TOO MANY 'DEFORMATIONS' TO THE DELTA OF THE 'SHORTED' OPTION

... WHAT KIND OF OPTIONS?


... SOME REMARKS

ATM OPTIONS HAVE THE

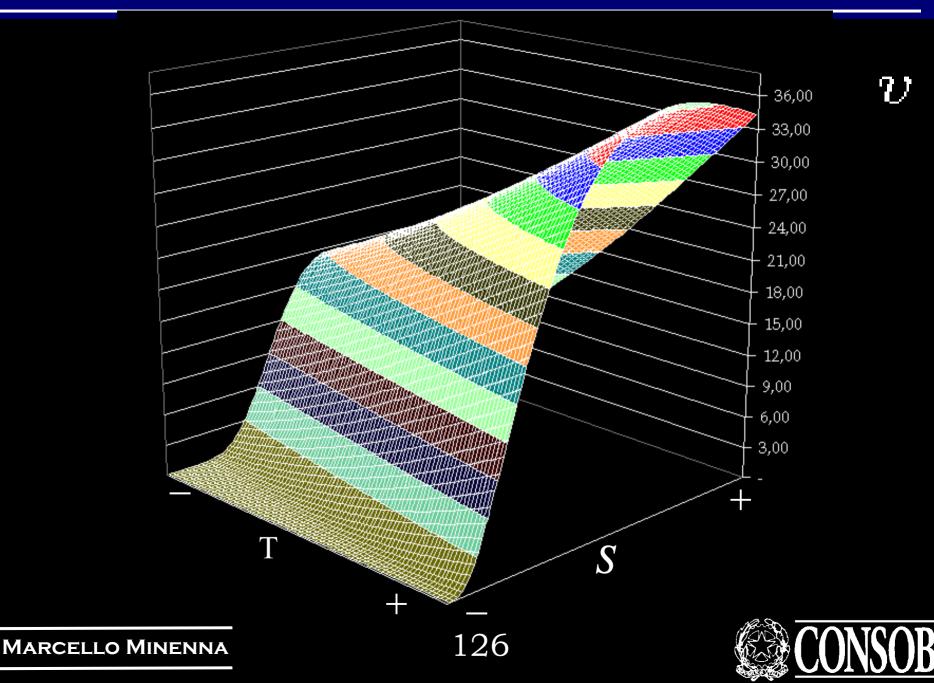
BIGGEST U

$\Delta - \Gamma - \upsilon$ hedging

v

... WHAT KIND OF OPTION?

... SOME REMARKS


U OF AN OPTION FUNDAMENTALLY DECREASES AS TIME ELAPSES

MARCELLO MINENNA

125

$\Delta - \Gamma - \upsilon$ hedging

$\Delta - \Gamma - \upsilon$ hedging

ATM OPTIONS HAVE

THE BIGGEST ${f U}$

U OF AN OPTION FUNDAMENTALLY DECREASES AS TIME ELAPSES

LET US DINAMICALLY RECOMPOSE THE PORTFOLIO WITH LONG TERM AND ATM OPTIONS

LET US DINAMICALLY RECOMPOSE THE PORTFOLIO WITH LONG TERM AND ATM OPTIONS

- TRANSATION COSTS
- TRADING STRATEGIES
- **RISK LIMITS**

.

MARCELLO MINENNA

128

TIME T=0

Short 1 Call (W) Let us define a \triangle neutral portfolio 'A' Long 1 option (z) Long 1 option (y)

$$\Delta_{A} = \mathbf{0}$$
$$\Gamma_{A} = \mathbf{N} * \Gamma_{w}$$

TIME T=0

PORTFOLIO B = PORT. A + N * Z + N * Y

... GREEK LETTERS OF B?

$\Delta - \overline{\Gamma} - \upsilon$ hedging trough formulas

TIME T=0

 $\Delta_{\mathbf{B}} = \Delta_{\mathbf{A}^{+}\mathbf{N}_{\mathbf{Z}}} \Delta_{\mathbf{Z}} + \mathbf{N}_{\mathbf{Y}} \Delta_{\mathbf{Y}}$

TIME T=0

$$\Gamma_B = n_w \Gamma_w + n_z \Gamma_z + n_y \Gamma_y$$

GIVEN THAT:

$$\Gamma_{A} = N_{W}\Gamma_{W}$$

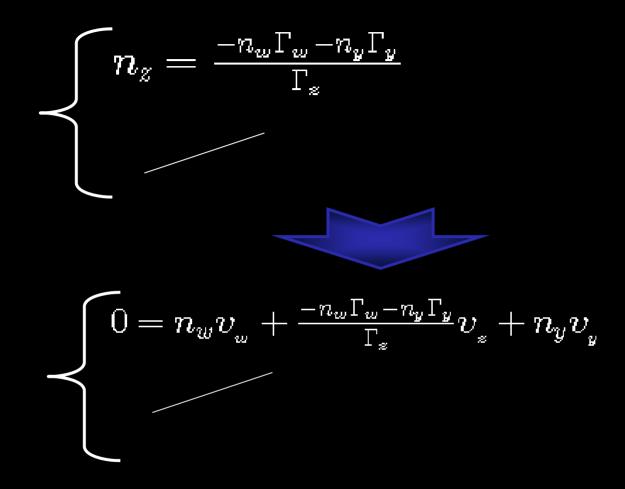
TIME T=0

$$v_{_B}=n_wv_{_w}+n_zv_{_z}+n_yv_{_y}$$

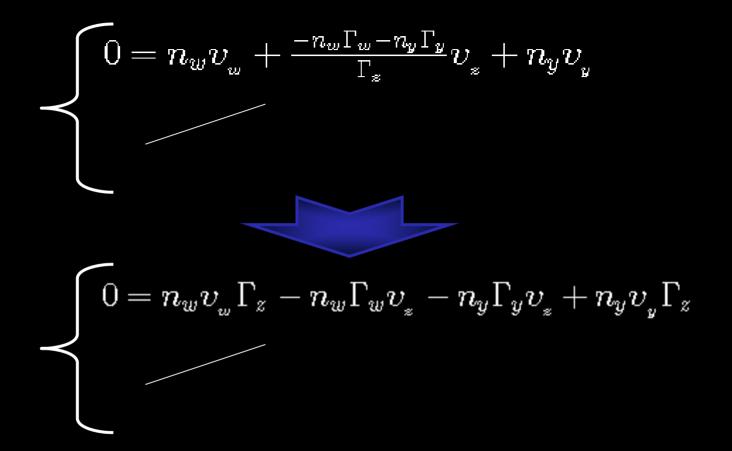
GIVEN THAT:

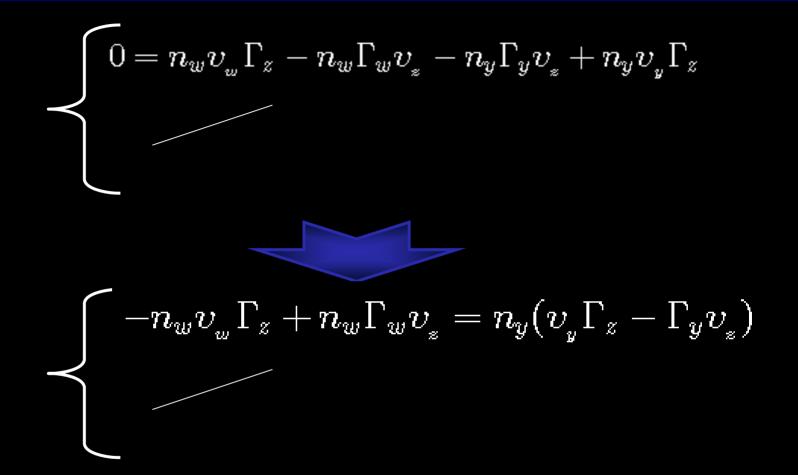
 $U_A = N_w U_w$

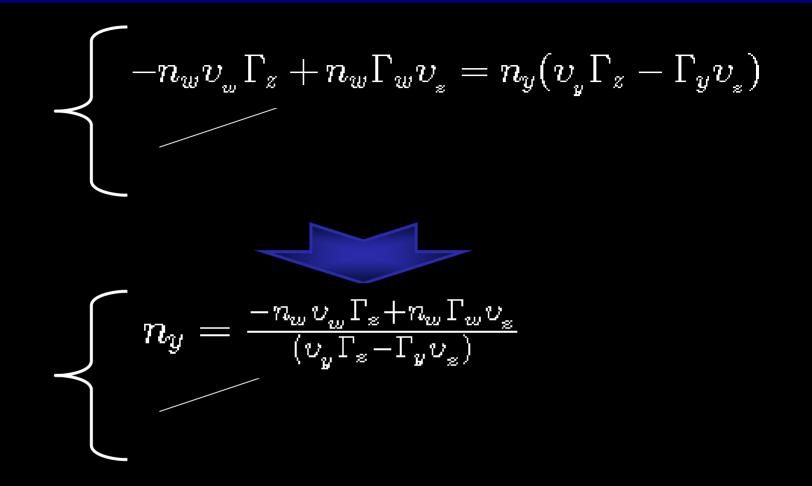
... IN ORDER TO OBTAIN $\Gamma_{\rm B} = U_{\rm B} = 0$...THAT IS A $\Gamma - U$ NEUTRAL PORTFOLIO

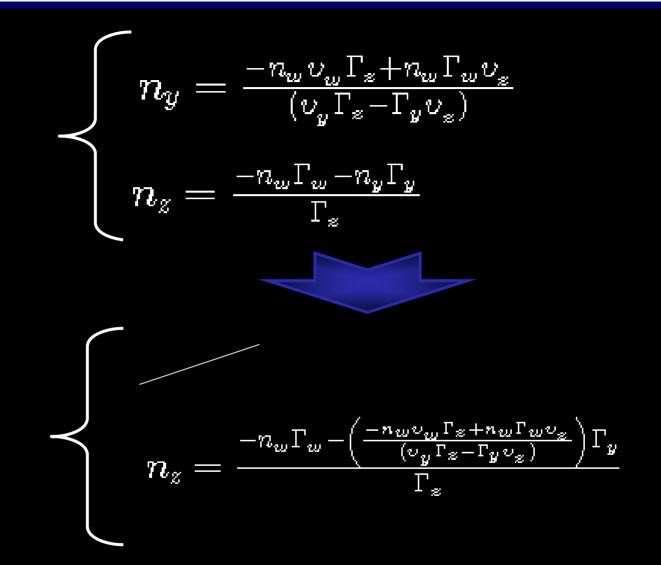


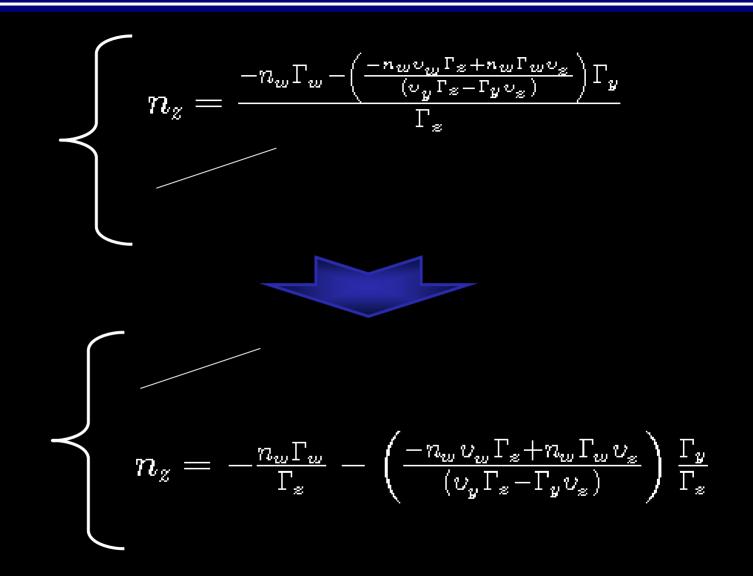
$$iggle iggle 0 = n_w \Gamma_w + n_z \Gamma_z + n_y \Gamma_y \ 0 = n_w v_w + n_z v_z + n_y v_y$$



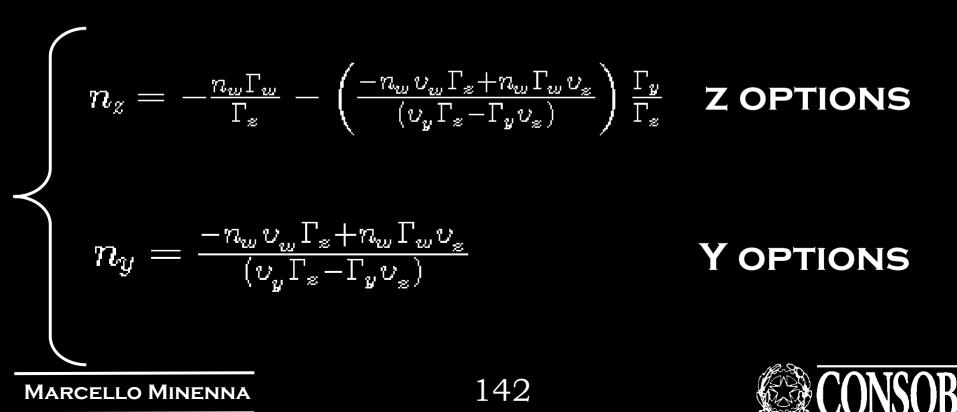

$\Delta - \Gamma - U$ hedging trough formulas







$\Delta - \Gamma - U$ hedging trough formulas



... IN ORDER TO OBTAIN $\Gamma_{\rm B} = U_{\rm B} = 0$

IT IS NECESSARY TO NEGOTIATE

... BUT IT IS NOT THE WHOLE STORY

The new portfolio B will not be Δ neutral $\Delta_{B} = N_{Z} \Delta_{Z} + N_{Y} \Delta_{Y}$

... BUT IT IS NOT THE WHOLE STORY

The new portfolio B will not be Δ neutral $\Delta_{B} = N_{Z} \Delta_{Z} + N_{Y} \Delta_{Y}$

LET US REBALANCE THE PORTFOLIO IN ORDER TO OBTAIN THE FOLLOWING RESULT:

$$\Delta_{c} = \mathbf{0}$$

MARCELLO MINENNA

144

KURPIEL & RONCALLI (1998)

 $\Delta - \Gamma - U$ hedging referred to time horizons of 5, 1, 1/2 days supplies substantial advantages in particular under stochastic volatility

LET US HOLD THE OPTION 'Z' UNTIL MATURITY

AT MATURITY THE OPTION 'W' IS OUT — THE MONEY

Short 1	000 call on 1	stock	Option and ∆				Stock and	Δ		∆ Portfolio	Γ Portfolio "A"	u Portfolio "A"
			Q.	Δ				Δ			Γ portfolio =	υ _{portfolio} =
Time Step	Time to Expiration	STOCK PRICE	Opz.	call	Δ call Posit.	Stock to Buy/(Sell)	Warehouse		∆ Stock Posit.	Total ∆ position	Γ I Option,*n.az. Underlying	U I Option*n.az. Underlying
0	0,2500	100,0	(1.000)	0,564	(564)	564	564	1	564	-	(15,70)	(19.628)
1	0,2375	99,6	(1.000)	0,557	(557)	(7)	557	1	557	-	(16,22)	(19.120)
2	0,2250	101,0	(1.000)	0,577	(577)	20	577	1	577	-	(16,30)	(18.697)
3	0,2125	107,8	(1.000)	0,683	(683)	106	683	1	683	-	(14,28)	(17.643)
4	0,2000	109,0	(1.000)	0,701	(701)	18	701	1	701	-	(14,19)	(16.847)
5	0,1875	109,1	(1.000)	0,706	(706)	5	706	1	706	-	(14,52)	(16.208)
б	0,1750	108,7	(1.000)	0,703	(703)	(3)	703	1	703	-	(15,17)	(15.681)
7	0,1625	103,6	(1.000)	0,621	(621)	(82)	621	1	621	-	(18,17)	(15.857)
8	0,1500	93,6	(1.000)	0,414	(414)	(207)	414	1	414	-	(21,48)	(14.107)
9	0,1375	91,9	(1.000)	0,370	(370)	(44)	370	1	370	-	(22,12)	(12.855)
10	0,1250	86,2	(1.000)	0,234	(234)	(136)	234	1	234	-	(20,12)	(9.342)
11	0,1125	87,6	(1.000)	0,249	(249)	15	249	1	249	-	(21,56)	(9.307)
12	0,1000	87,9	(1.000)	0,239	(239)	(10)	239	1	239	-	(22,28)	(8.610)
13	0,0875	83,6	(1.000)	0,133	(133)	(106)	133	1	133	-	(17,40)	(5.325)
14	0,0750	92,0	(1.000)	0,303	(303)	170	303	1	303	-	(27,69)	(8.797)
15	0,0625	95,0	(1.000)	0,370	(370)	67	370	1	370	-	(31,80)	(8.962)
16	0,0500	91,5	(1.000)	0,235	(235)	(135)	235	1	235	-	(30,01)	(6.277)
17	0,0375	88,6	(1.000)	0,117	(117)	(118)	117	1	117	-	(22,96)	(3.378)
18	0,0250	91,5	(1.000)	0,142	(142)	25	142	1	142	-	(31,01)	(3.245)
19	0,0125	8,09	(1.000)	0,045	(45)	(97)	45	1	45	-	(18,83)	(970)
20	0000,0	87,5	(1.000)	0,000	-	(45)		1	-	-	-	-

MARCELLO MINENNA

ONSOB

Υ

portfolio $\mathbf{B} =$ portfolio $\mathbf{A} + \mathbf{II}$ option $+ \mathbf{III}$ option $\Gamma - v$ Portfolio "B"														
Γ-υ Portfolio "B"														
	II Option		I	II Option										
II Option value	Γ II 'option	U II option	III Option value	Г ш option	ប III option	n. II (option Buy/sell	n. III option buy/sell	Γ II option _{Tot}	Γ III option _{Tot}	υ II option Tot	ບ III option Tot	Γ portfolic "B"	ບ portfolio "B"	Total Δ position
8,5320	0,0155	20,3815	10,8995	0,0149	20,5532	2.022	(1.051)	31	(16)	41.219	(21.591)	-	-	396
8,0880	0,0160	19,8035	10,4330	0,0154	20,0694	2.033	(1.053)	32	(16)	40.253	(21.133)	-	-	388
8,4726	0,0162	19,5841	10,9321	0,0154	19,6781	2.015	(1.056)	33	(16)	39.471	(20.774)	-	-	394
11,9678	0,0150	19,6378	14,9784	0,0136	18,7267	1.903	(1.053)	29	(14)	37.361	(19.718)	-	-	435
12,3611	0,0151	19,0413	15,4827	0,0135	17,9868	1.880	(1.054)	28	(14)	35.800	(18.953)	-	-	435
12,1542	0,0155	18,4611	15,3176	0,0137	17,3926	1.873	(1.056)	29	(15)	34.577	(18.369)	-	-	429
11,5627	0,0162	17,9031	14,7232	0,0143	16,9039	1.877	(1.060)	30	(15)	33.603	(17.922)		-	420
8,3385	0,0183	17,2177	11,0967	0,0169	17,0414	1.984	(1.074)	36	(18)	34.153	(18.296)	-	-	385
3,6873	0,0192	13,6472	5,4801	0,0200	15,3406	2.240	(1.073)	43	(21)	30.564	(16.458)		-	280
2,9088	0,0191	12,1340	4,5198	0,0206	14,1752	2.311	(1.072)	44	(22)	28.047	(15.192)		-	250
1,3645	0,0160	8,1671	2,3963	0,0195	10,8369	2.516	(1.034)	40	(20)	20.552	(11.210)	-	-	165
1,4154	0,0170	8,1778	2,5330	0,0206	10,8703	2.529	(1.046)	43	(22)	20.683	(11.376)	-	-	170
1,2554	0,0172	7,4960	2,3531	0,0213	10,2705	2.584	(1.048)	45	(22)	19.373	(10.763)	-	-	160
0,5252	0,0124	4,3301	1,1807	0,0180	7,0894	2.811	(966)	35	(17)	12.172	(6.847)	-	-	92
1,5434	0,0214	7,9223	2,9890	0,0251	10,6184	2.591	(1.105)	55	(28)	20.527	(11.730)	-	-	182
1,9092	0,0249	8,4316	3,6923	0,0275	10,8487	2.551	(1.157)	64	(32)	21.510	(12.547)	-	-	200
0,8656	0,0207	5,4135	2,0986	0,0272	8,5335	2.899	(1.103)	60	(30)	15.693	(9.416)	-	-	128
0,3133	0,0141	2,7735	1,0744	0,0243	5,9569	3.248	(945)	46	(23)	9.008	(5.630)	-	-	63
0,3420	0,0179	2,8077	1,3338	0,0300	6,2870	3.467	(1.032)	62	(31)	9.735	(6.490)	-	-	59
0,1031	0,0113	1,1613	0,7943	0,0293	4,5360	3.342	(642)	38	(19)	3.881	(2.911)	-	-	11
8000,0	0,0005	0,0221	0,1448	0,0152	1,4579	_	-	-	-	-	-	-	-	-

148

	portfolio "C"= Port. "B"+ Stock f(& hedge of "B")											
∆ Port. "B"	Stoc	k and 🛦 P	ortfo	lio	∆ Portfolio "C"							
Total A	Stock to Buy/(Sell)	Warehouse	∆ Sto ck	Δ Stock	Total ∆							
position			CK	Posit.	position							
396	(396)	(396)	1	(396)	-							
388	8	(388)	1	(388)	-							
394	(6)	(394)	1	(394)	-							
435	(41)	(435)	1	(435)	-							
435	_	(435)	1	(435)	-							
429	б	(429)	1	(429)	-							
420	9	(420)	1	(420)	-							
385	35	(385)	1	(385)	-							
280	105	(280)	1	(280)	-							
250	30	(250)	1	(250)	-							
165	85	(165)	1	(165)	-							
170	(5)	(170)	1	(170)	-							
160	10	(160)	1	(160)	-							
92	68	(92)	1	(92)	-							
182	(90)	(182)	1	(182)	-							
200	(18)	(200)	1	(200)	-							
128	72	(128)	1	(128)	-							
63	65	(63)	1	(63)	-							
59	4	(59)	1	(59)	-							
11	48	(11)	1	(11)	-							
-	11	-	1	-	-							

	quantitative composition of the "C" Portfolio, value of Δ Γ $\&$ U													
Sto	ock	Short Opt.	Option	n for F	Option	a for V	Delta e	Gamma	Vega					
D (D	T. T. T.			1 17 3		T 17 T	Δ	Г	υ					
Buy/sell	Warehouse	Short Opt.	Buy/sell	₩arehouse	Buy/sell	Warehouse	portfolio C	1 portfolio ⊂	portfolio → C					
168	168	(1.000)	2.022	2.022	(1.051)	(1.051)	_	-						
1	169	(1.000)	10	2.033	(2)	(1.053)	-	-	-					
14	183	(1.000)	(17)	2.015	(3)	(1.056)	_	_	_					
65	248	(1.000)	(113)	1.903	3	(1.053)	_	_	_					
18	266	(1.000)	(22)	1.880	(1)	(1.054)	-	-	-					
11	277	(1.000)	(7)	1.873	(2)	(1.056)	-	-	-					
6	283	(1.000)	4	1.877	(4)	(1.060)	-	-	-					
(47)	236	(1.000)	107	1.984	(13)	(1.074)	-	-	-					
(102)	134	(1.000)	256	2.240	1	(1.073)	-	-	_					
(14)	120	(1.000)	72	2.311	1	(1.072)	-	-	_					
(51)	69	(1.000)	205	2.516	37	(1.034)	-	-	_					
10	79	(1.000)	13	2.529	(12)	(1.046)	-	-	-					
-	79	(1.000)	55	2.584	(1)	(1.048)	-	-	-					
(38)	41	(1.000)	227	2.811	82	(966)	-	-	-					
80	121	(1.000)	(220)	2.591	(139)	(1.105)	-	-	-					
49	170	(1.000)	(40)	2.551	(52)	(1.157)	-	_	-					
(63)	107	(1.000)	348	2.899	53	(1.103)	_	-	-					
(53)	54	(1.000)	349	3.248	158	(945)	-	-	-					
29	83	(1.000)	219	3.467	(87)	(1.032)	-	-	-					
(49)	34	(1.000)	(125)	3.342	391	(642)	-	-	-					
(34)	-	(1.000)	(3.342)	-	642	-	-	-	-					

Delta Gamma Vega Hedging Cash Flow													
Stock	Option	Opt. for Γ	Opt. for U		Bank								
Dollars in Stock (Flow)	Cash ex Shorting/Exer cising Option	Dollars in Option (Flow)	Dollars in Option (Flow)	Cash	Interest (Flow)	Borrow (stock)	Hedging Revenue (cost)						
16.800	10.378	17.255	(11.450)	12.228		12.228							
100		83	(26)	156	7,6	12.392							
1.414		(145)	(30)	1.239	7,7	13.638							
7.009		(1.352)	41	5.698	8,5	19.345							
1.961		(277)	(12)	1.673	12,1	21.029							
1.200		(87)	(37)	1.076	13,1	22.119							
652		46	(60)	638	13,8	22.771							
(4.871)		889	(149)	(4.131)	14,2	18.654							
(9.545)		944	5	(8.596)	11,7	10.069							
(1.287)		209	5	(1.073)	6,3	9.002							
(4.396)		280	89	(4.027)	5,б	4.981							
876		18	(30)	864	3,1	5.848							
-		69	(3)	66	3,7	5.918							
(3.178)		119	97	(2.962)	3,7	2.959							
7.363		(340)	(415)	6.608	1,9	9.569							
4.653		(76)	(192)	4.385	6,0	13.961							
(5.763)		301	112	(5.350)	8,7	8.619							
(4.695)		109	170	(4.416)	5,4	4.209							
2.653		75	(116)	2.612	2,6	6.824							
(4.449)		(13)	310	(4.152)	4,3	2.676							
(2.976)	-	-	93	(2.883)	1,7	(205)	205						

MARCELLO MINENNA

ISOB

NS.

U

LET US HOLD THE OPTION 'Z' UNTIL MATURITY

AT MATURITY THE OPTION 'W' IS IN - THE MONEY

Short 1	.000 call on 1	stock	Option	n and _{! .}	Δ	S.	Stock and	Δ		∆ Portfolio	Γ Portfolio "A"	υ Portfolio "A"
			Q.	Δ		Stock to		Δ			-	
Time Step	Time to Expiration	STOCK PRICE	Opz.	call	Δ call Posit.	зтоск то Виу/(Sell)	Warehouse	Stoc k	∆ Stock Posit.	Total ∆ position	∏ I ,option <u>*n.az.</u> Underlying	U I option * _{n.az.} Underlying
0	0,2500	100,0	(1.000)	0,564	(564)	564	564	1	564	-	(15,70)	(19.628)
1	0,2375	102,9	(1.000)	0,607	(607)	43	607	1	607	-	(15,28)	(19.202)
2	0,2250	96,9	(1.000)	0,508	(508)	(99)	508	1	508	-	(17,31)	(18.291)
3	0,2125	94,2	(1.000)	0,456	(456)		456	1	456	-	(18,23)	(17.176)
4	0,2000	92,4	(1.000)	0,417	(417)	(39)	417	1	417	-	(18,87)	(16.091)
5	0,1875	91,9	(1.000)	0,402	(402)			1	402	-	(19,41)	(15.368)
6	0,1750	97,1	(1.000)	0,499	(499)		499	1	499	-	(19,60)	(16.181)
7	0,1625	98,0	(1.000)	0,512	(512)	13	512	1	512	-	(20,16)	(15.723)
8	0,1500	107,3	(1.000)	0,688	(688)	176	688	1	688	-	(16,96)	(14.659)
9	0,1375	107,6	(1.000)	0,697	(697)	9	697	1	697	-	(17,45)	(13.898)
10	0,1250	113,8	(1.000)	0,801	(801)	104	801	1	801	-	(13,82)	(11.186)
11	0,1125	105,2	(1.000)	0,660	(660)	(141)	660	1	660	-	(20,72)	(12.905)
12	0,1000	105,8	(1.000)	0,677	(677)	17	677	1	677	-	(21,42)	(11.989)
13	0,0875	107,5	(1.000)	0,721	(721)	44	721	1	721	-	(21,09)	(10.668)
14	0,0750	110,8	(1.000)	0,800	(800)		800	1	800	-	(18,42)	(8.488)
15	0,0625	118,9	(1.000)	0,928	(928)	128	928	1	928	-	(9,17)	(4.049)
16	0,0500	128,5	(1.000)	0,989	(989)	61	989	1	989	-	(1,89)	(782)
17	0,0375	128,1	(1.000)	0,995	(995)		995	1	995	-	(1,03)	
18	0,0250	126,1	(1.000)	0,998	(998)	3	998	1	998	-	(0,47)	
19	0,0125	129,5	(1.000)	1,000	(1.000)	2	1.000	1	1.000	-	(00,0)	
20	0,0000	135,4	(1.000)	1,000	(1.000)	-	1.000	1	1.000	-	-	-

Portfolio $\mathbf{B} = Portfolio \mathbf{A} + \mathbf{II} Option + \mathbf{III} Option$															
	Γ-υ Portfolio "B" 🗛														
	II Option		I	II Option											
II Option value	Γ II option	ບ II option	III Option value	Γ III option	ບ III option	n. II option Buy/sell	n. III option buy/sel1	Γ II option Tot	Γ III option Tot	ບ II option Tot	ບ III option Tot	Γ portfolic "B"	ບ portfolic "B"	Total Δ	
8,5320	0,0155	20,3815	10,8995	0,0149	20,5532	2.022	(1.051)	31	(16)	41.219	(21.591)) –	-	396	
9,7225	0,0154	20,3963	12,3193	0,0145	20,1679	1.982	(1.052)	31	(15)	40.426	(21.224)) –	-	413	
6,5788	0,0166	18,5301	8,7069	0,0164	19,2663	2.084	(1.055)	35	(17)	38.614	(20.323)) –	-	358	
5,2071	0,0170	16,9797	7,1031	0,0173	18,1947	2.142	(1.055)	36	(18)	36.374	(19.197)) –	-	324	
4,3079	0,0172	15,6141	6,0409	0,0179	17,1595	2.190	(1.055)	38	(19)	34.192	(18.102)) –	-	298	
3,9135	0,0175	14,7975	5,5943	0,0184	16,4811	2.216	(1.057)	39	(19)	32.785	(17.417)) –	-	285	
5,5771	0,0185	16,3570	7,7242	0,0183	17,2915	2.120	(1.069)	39	(20)	34.674	(18.493)) –	-	335	
5,6346	0,0191	16,0207	7,8617	0,0188	16,8732	2.114	(1.075)	40	(20)	33.864	(18.141)) –	-	336	
10,0788	0,0179	16,7351	13,1938	0,0158	15,9604	1.898	(1.072)	34	(17)	31.762	(17.102)) –	-	398	
9,8899	0,0185	16,0717	13,0655	0,0162	15,2678	1.887	(1.076)	35	(17)	30.323	(16.425)) –	-	390	
13,5852	0,0162	14,3971	17,3239	0,0132	12,7919	1.709	(1.049)	28	(14)	24.608	(13.423)) –	-	389	
7,7618	0,0212	14,7012	10,7844	0,0189	14,3646	1.951	(1.098)	41	(21)	28.678	(15.773)) –	-	357	
7,6759	0,0222	13,9702	10,7993	0,0194	13,5542	1.931	(1.106)	43	(21)	26.975	(14.986)) –	-	346	
8,2416	0,0227	13,1200	11,5999	0,0191	12,4028	1.858	(1.106)	42	(21)	24.383	(13.716)) –	-	334	
9,9227	0,0218	11,7366	13,6940	0,0171	10,5019	1.688	(1.078)	37	(18)	19.806	(11.318)) –	-	310	
15,6275	0,0149	7,8992	20,1172	0,0102	6,2860	1.230	(902)	18	(୨)	9.718	(5.669)) –	-	225	
24,0642	0,0059	3,0260	28,9788	0,0036	2,2120	646	(530)	4	(2)	1.955	(1.173)) –		101	
23,5122	0,0050	2,0470	28,4795	0,0029	1,5131	412	(349)	2	(1)	844	(528)) –		57	
21,3530	0,0048	1,4442	26,3520	0,0028	1,1223	193	(165)	1	(0)	278	(185)) –	-	25	
24,6183	0,0010	0,2100	29,6596	8000,0	0,2379	2	(1)	0	(0)	0	(0)		_	1	
30,4471	0000,0	0,0002	35,4896	0,0000,0	0,0045	-	-	-	-	-	-	-	-	-	

154

$\Delta - \Gamma - \upsilon \text{ hedging}$

	portfolio "C"= Port. "B"+ Stock f(& hedge of "B")											
∆ Port. "B"	Stoc	ck and A P	ortfol	lio	∆ Portfolio "C"							
Total Δ position	Stock to Buy/(Sell)	Warehouse	∆ Sto ck	Δ Stock Posit.	Total ∆ position							
396	(396)	(396)	1	(396)	-							
413	(17)	(413)	1	(413)	-							
358	55	(358)	1	(358)	-							
324	34	(324)	1	(324)	-							
298	26	(298)	1	(298)	-							
285	13	(285)	1	(285)	-							
335	(50)	(335)	1	(335)	-							
336	(1)	(336)	1	(336)	-							
398	(62)	(398)	1	(398)	-							
390	8	(390)	1	(390)	-							
389	1	(389)	1	(389)	-							
357	32	(357)	1	(357)	-							
346	11	(346)	1	(346)	-							
334	12	(334)	1	(334)	-							
310	24	(310)	1	(310)	-							
225	85	(225)	1	(225)	-							
101	124	(101)	1	(101)	-							
57	44	(57)	1	(57)	-							
25	32	(25)	1	(25)	-							
1	24	(1)	1	(1)	-							
-	1	-	1	-	-							

	quantitative composition of the "C" Portfolio, value of Δ & Γ & υ													
Sto	ock	Short Opt.	Optio	n for F	Option	1 for V	Delta e	Gamma	Vega					
							Δ	Г	υ					
Buy/sell	Warehouse	Short Opt.	Buy/sell	Warehouse	Buy/sell	Warehouse	1 portfolio C	_portfolio C	portfolio ∶ ⊂					
168	168	(1.000)	2.022	2.022	(1.051)	(1.051)		-	-					
26	194	(1.000)	(40)	1.982	(2)	(1.052)	-	-	-					
(44)	150	(1.000)	102	2.084	(3)	(1.055)	-	-	-					
(18)	132	(1.000)	58	2.142	(0)	(1.055)	-	_	-					
(13)	119	(1.000)	48	2.190	0	(1.055)	-	_	-					
(2)	117	(1.000)	26	2.216	(2)	(1.057)	-	-	-					
47	164	(1.000)	(96)	2.120	(13)	(1.069)	-	-	-					
12	176	(1.000)	(6)	2.114	(6)	(1.075)	-	-	-					
114	290	(1.000)	(216)	1.898	4	(1.072)	-	-	-					
17	307	(1.000)	(11)	1.887	(4)	(1.076)	-	-	-					
105	412	(1.000)	(177)	1.709	26	(1.049)	-	-	-					
(109)	303	(1.000)	241	1.951	(49)	(1.098)	-	-	-					
28	331	(1.000)	(20)	1.931	(8)	(1.106)	-	-	-					
56	387	(1.000)	(72)	1.858	(0)	(1.106)	-	-	-					
103	490	(1.000)	(171)	1.688	28	(1.078)	-	-	-					
213	703	(1.000)	(457)	1.230	176	(902)	-	-	-					
185	888	(1.000)	(584)	646	372	(530)	-	-	-					
50	938	(1.000)	(234)	412	182	(349)	-	-	-					
35	973	(1.000)	(220)	193	183	(165)	-	-	-					
26	999	(1.000)	(191)	2	164	(1)	-	-	-					
1	1.000	(1.000)	(2)	-	1	-	-	-	-					

MARCELLO MINENNA

OB

Delta Gamma Vega Hedging Cash Flow												
Stock	Option	Opt. for Γ	Opt. for U		Bank							
Dollars in Stock (Flow)	Cash e x Shorting/Exer cising Option	Dollars in Option (Flow)	Dollars in Option (Flow)	Cash	Interest (Flow)	Borrow (stock)	Hedging Revenue (cost)					
16.800	10.378	17.255	(11.450)	12.228		12.228						
2.674		(393)	(23)	2.259	7,6	14.494						
(4.264)		670	(22)	(3.616)	9,1	10.888						
(1.695)		304	(2)	(1.393)	6,8	9.502						
(1.201)		205	1	(994)	5,9	8.514						
(184)		101	(10)	(94)	5,3	8.425						
4.565		(534)	(98)	3.933	5,3	12.364						
1.176		(34)	(45)	1.097	7,7	13.468						
12.238		(2.176)	48	10.110	8,4	23.586						
1.830		(111)	(55)	1.664	14,7	25.265						
11.950		(2.411)	459	9.998	15,8	35.278						
(11.471)		1.874	(525)	(10.122)	22,1	25.178						
2.963		(152)	(82)	2.728	15,7	27.922						
6.021		(597)	(2)	5.422	17,5	33.361						
11.417		(1.696)	386	10.106	20,9	43.489						
25.319		(7.146)	3.538	21.711	27,2	65.227						
23.774		(14.061)	10.769	20.482	40,8	85.750						
6.406		(5.492)	5.170	6.084	53,6	91.888						
4.413		(4.693)	4.834	4.554	57,4	96.499						
3.367		(4.690)	4.860	3.537	60,3	100.096						
135	(100.000)	-	49	185	62,6	100.343	(343)					

MARCELLO MINENNA

ISOB

ND

Y

RISK MANAGEMENT

OF A FINANCIAL INSTITUTION

PROBLEMS

RISK LIMITS

OPTIONS WITHOUT CLOSED FORM SOLUTIONS

MARKET FUNCTIONING

RISK MANAGEMENT

OF A FINANCIAL INSTITUTION

PROBLEMS

RISK LIMITS

OPTIONS WITHOUT CLOSED FORM SOLUTIONS

MARKET FUNCTIONING

USE OF NUMERIC GREEK LETTERS

MARCELLO MINENNA

159

WHAT IS A NUMERIC GREEK LETTER?

$$\Delta = \frac{1}{2} (\Delta_{+1\%} + \Delta_{-1\%})$$

$$\Gamma = rac{1}{2}(\Gamma_{+1\%} + \Gamma_{-1\%})$$

$$v = \frac{1}{2}(v_{+1\%} + v_{-1\%})$$

... LET US LEAVE OUT THE OTHERS BECAUSE THEY ARE NOT SO IMPORTANT

FINANCIAL INSTITUTIONS DEFINE SOME BOUNDS IN TERMS OF GREEK LETTERS WITH REFERENCE TO:

> • SECURITY • MARKET

Some definitions

ANOMALOUS EXERCISE

• PAYMENT BY PHYSICAL DELIVERY

PAYMENT BY CASH SETTLEMENT

ANOMALOUS EXERCISE

THE HOLDER OF THE OPTION CAN PARTIALLY EXERCISE HIS RIGHT

PAYMENT BY PHYISICAL

SETTLEMENT

THE HOLDER OF THE OPTION MUST DELIVER THE UNDERLYING SECURITY

THE HOLDER OF THE OPTION MUST DELIVER THE DIFFERENTIAL BY CASH

Some Remarks

<u>Cash</u> <u>settlement</u> MICROSTRUCTURE ELEMENTS OF THE MARKET

KNOCK-IN TERMS

Some Remarks

<u>Cash</u> <u>settlement</u>

MICROSTRUCTURE ELEMENTS OF THE MARKET

FINE TUNING

RISK MANAGEMENT OF A FINANCIAL INSTITUTION

Some Remarks

MICROSTRUCTURE ELEMENTS OF THE MARKET

FINE

RISK MANAGEMENT

OF A FINANCIAL INSTITUTION

CASES OF MICROMANIPULATION

MARCELLO MINENNA

168

KNOCK-IN TERMS

COVERED WARRANT

REVERSE CONVERTIBLE/ DISCOUNT CERTIFICATE

COVERED WARRANT

REVERSE CONVERTIBLE

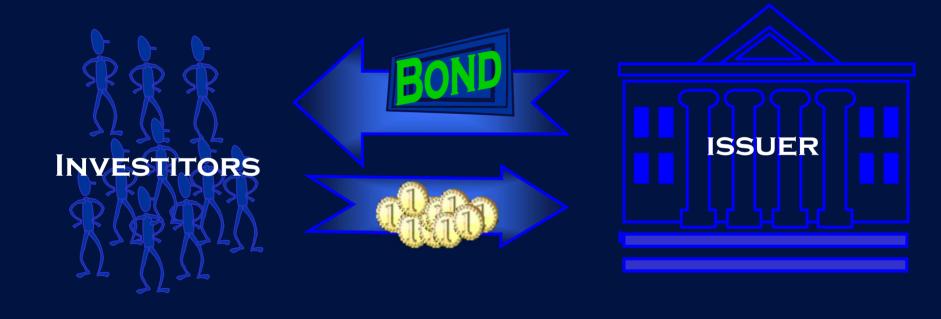
MARCELLO MINENNA

170

REVERSE CONVERTIBLE

... SOME INTRODUCTORY

REMARKS ...



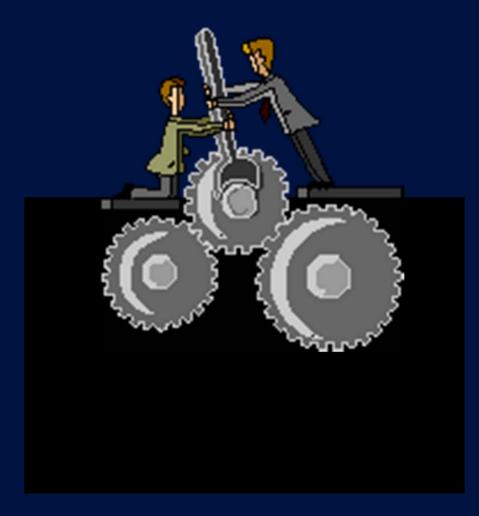
REVERSE CONVERTIBLE

THE ISSUE

How the product is sold

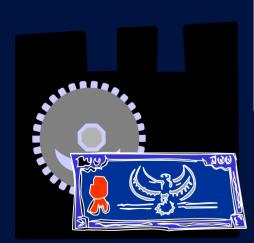
REVERSE CONVERTIBLE IS A STRUCTURED PRODUCT

UNBUNDLING



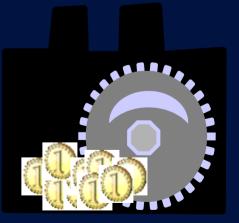
MARCELLO MINENNA

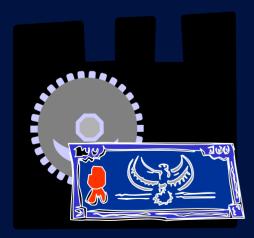
173



REVERSE CONVERTIBLE - UNBUNDLING

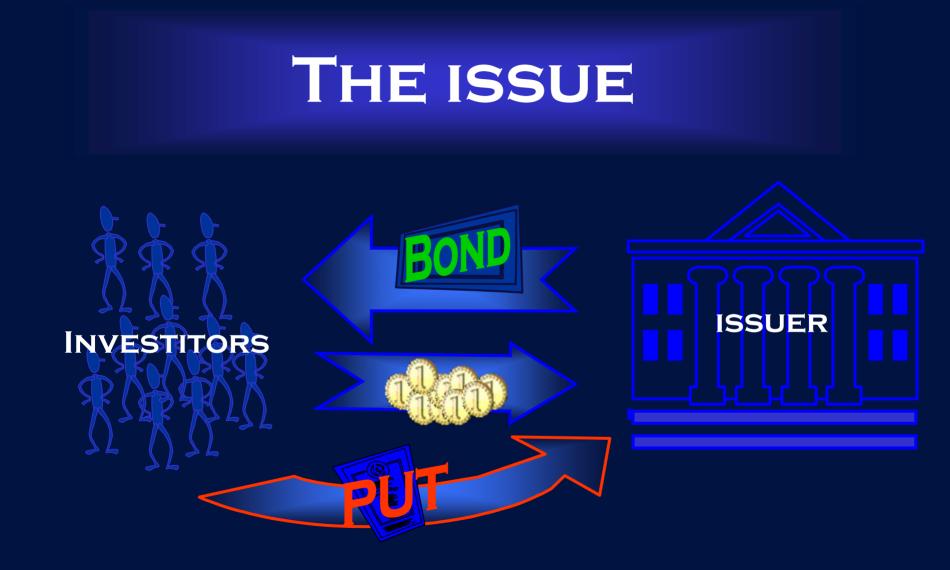
REVERSE CONVERTIBLE - UNBUNDLING



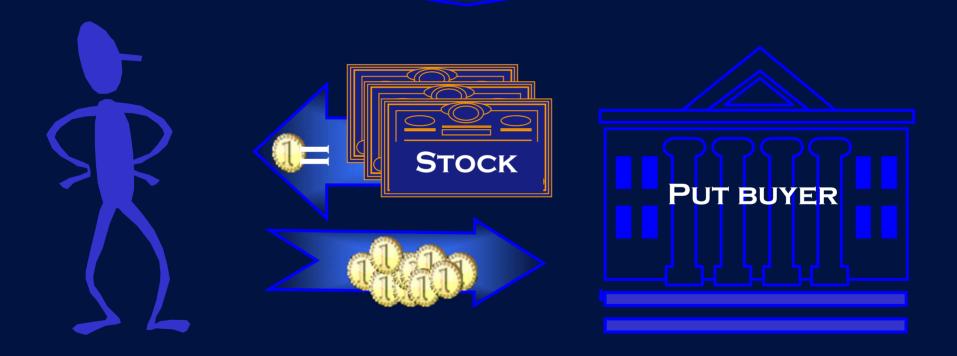

175

REVERSE CONVERTIBLE – PUT SHORTING

INVESTOR SHORTS A PUT



176


REVERSE CONVERTIBLE

REVERSE CONVERTIBLE – PUT SHORTING

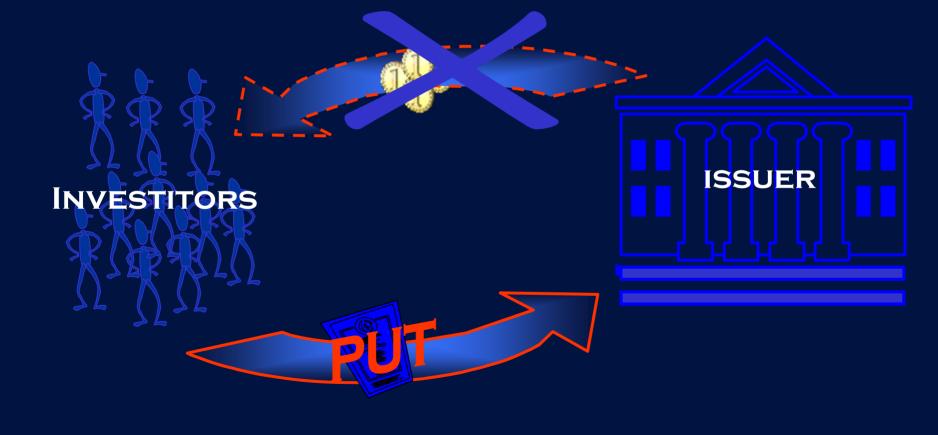
PUT SHORTING OBLIGATION AT EXPIRY

REVERSE CONVERTIBLE – ISSUE

THE STRUCTURE

REVERSE CONVERTIBLE – THE STRUCTURE

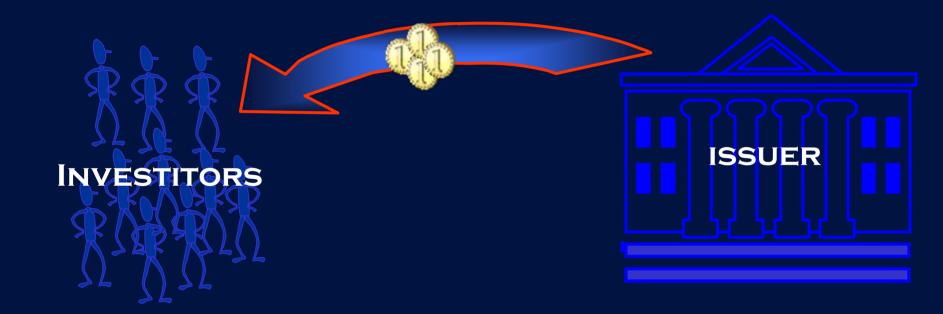
FACE VALUE


N.STOCKS UNDERLYING THE PUT X STRIKE PRICE (K) OF THE PUT

REVERSE CONVERTIBLE – THE STRUCTURE

THE PUT PREMIUM IS NOT RECEIVED BY INVESTORS WHEN

BUYING THE PRODUCT

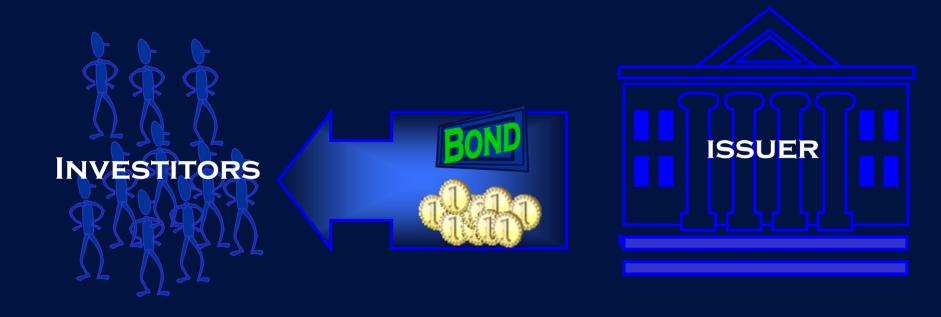


REVERSE CONVERTIBLE – THE STRUCTURE

.....BUT AT THE EXPIRY DATE

IN THE FORM OF A MAXI-COUPON

EXPIRY DATE:


OPTION IS OUT-THE-MONEY

EXPIRY DATE

OPTION OUT-OF THE MONEY

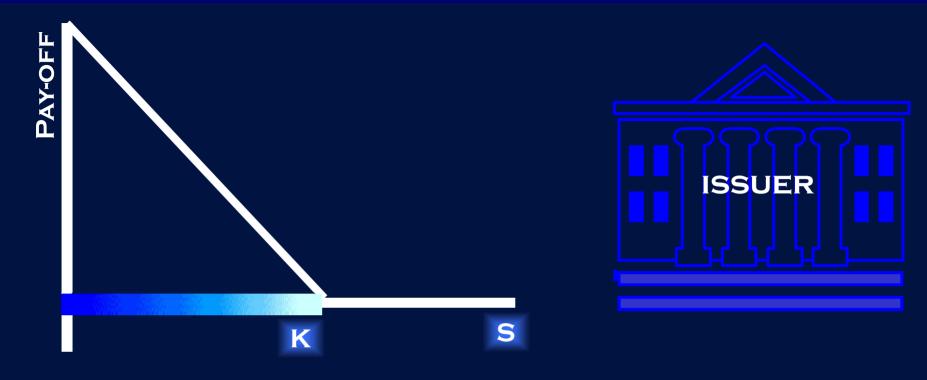
EXPIRY DATE

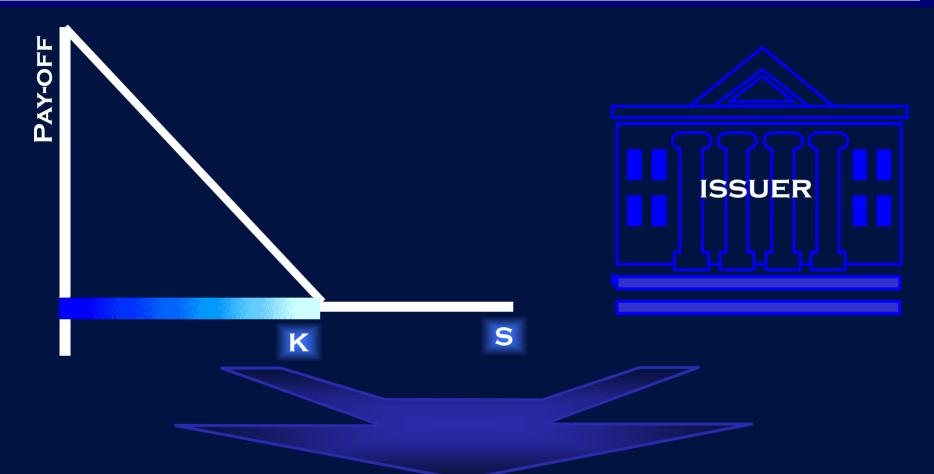
OPTION OUT-OF THE MONEY

REVERSE CONVERTIBLE – EXPIRY DATE

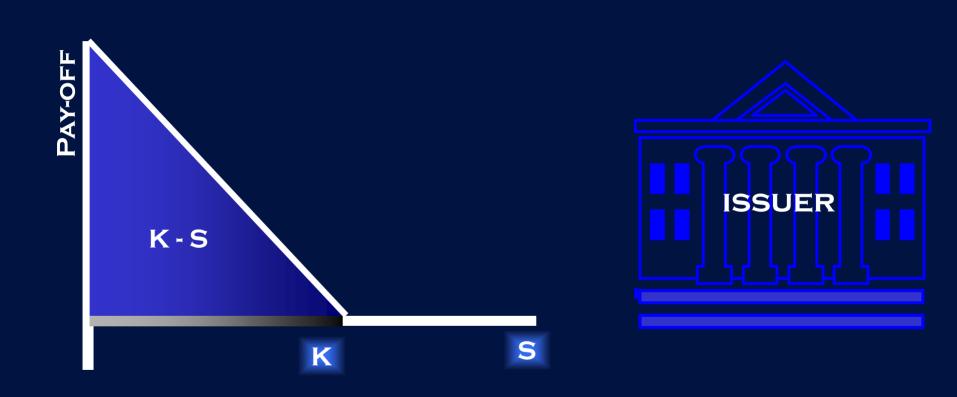
EXPIRY DATE:

OPTION IS IN-THE-MONEY

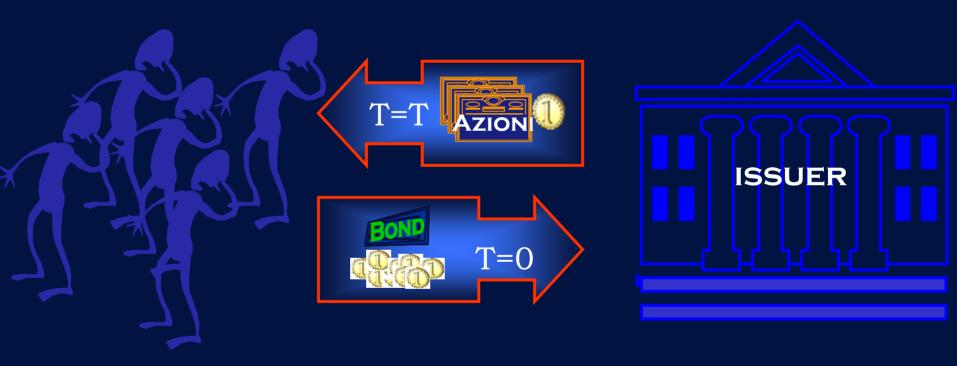

MARCELLO MINENNA

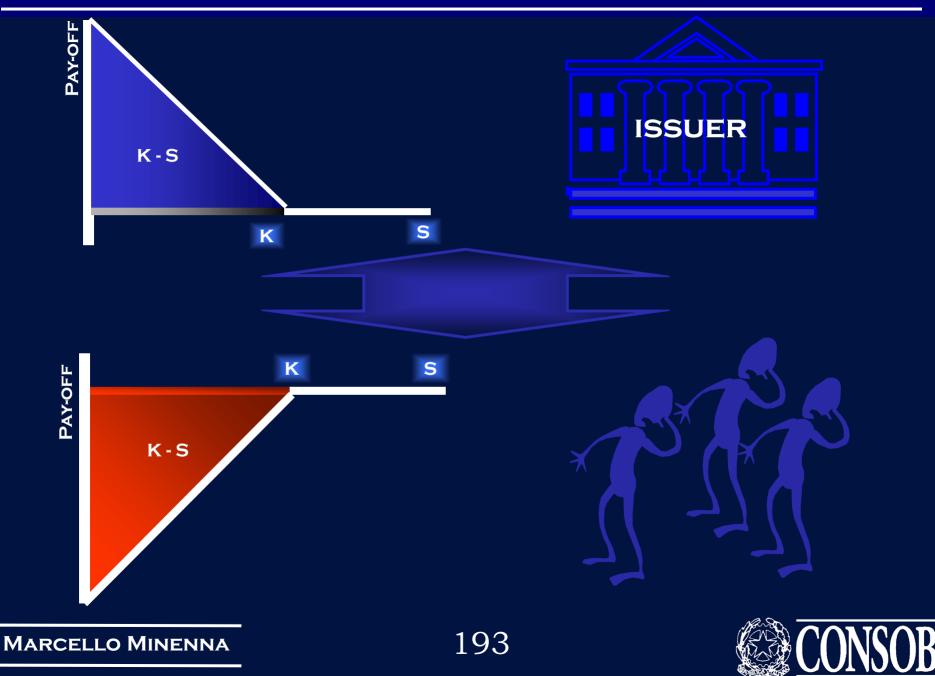

ISSUER IS LONG PUT....

MARCELLO MINENNA

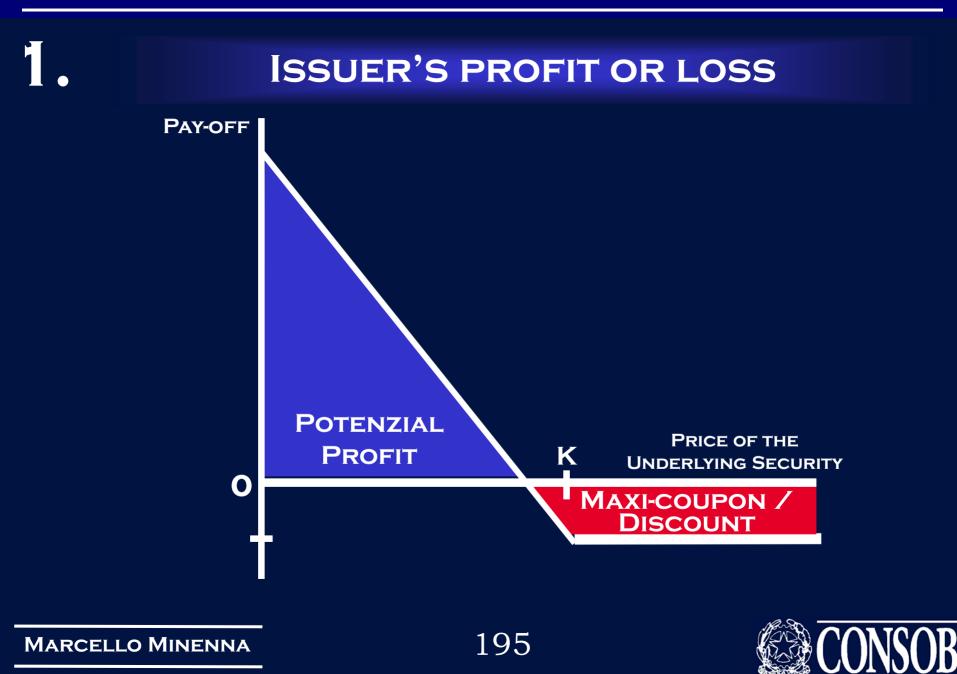


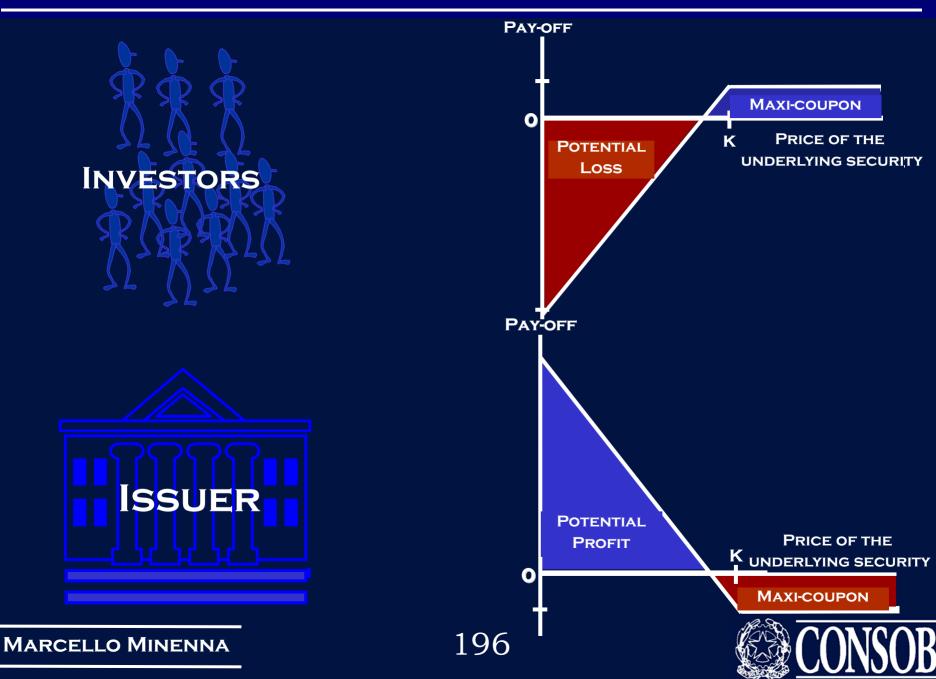
EXERCISE THE OPTION


MARCELLO MINENNA



REVERSE CONVERTIBLE – EXPIRY DATE




... SOME FURTHER

REMARKS ...

THE PAY-OFF'S COMPUTATION METHOD

ARE BASED ON

NOT VERY LIQUID PRICES

AS AN EXAMPLE: OPENING AND CLOSING PRICES

TIPOLOGY OF STRUCTURE

PLAIN VANILLA

SETTLEMENT:

• CASH

PHYSICAL DELIVERY

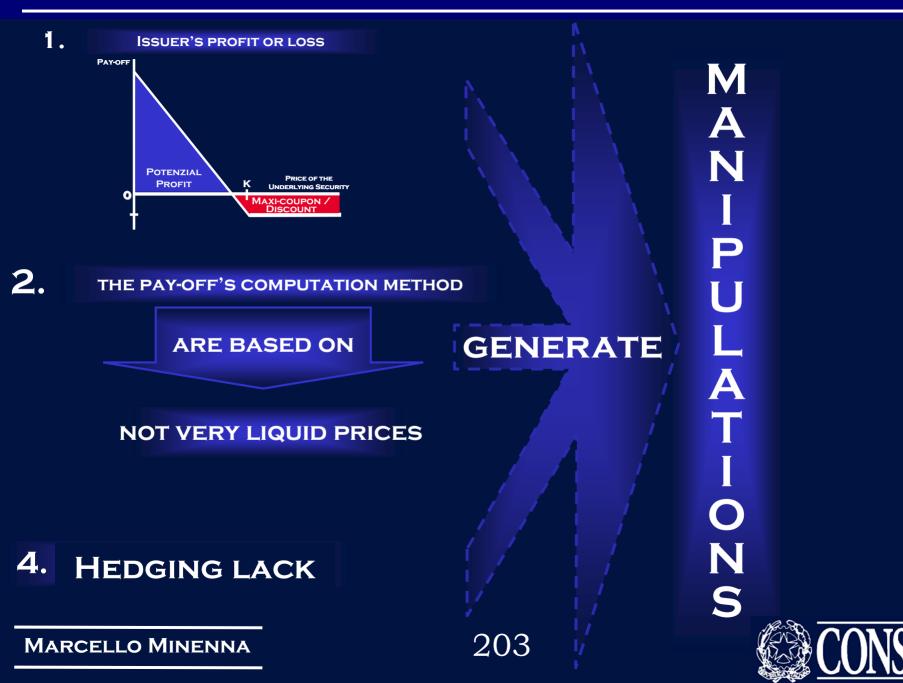
3.

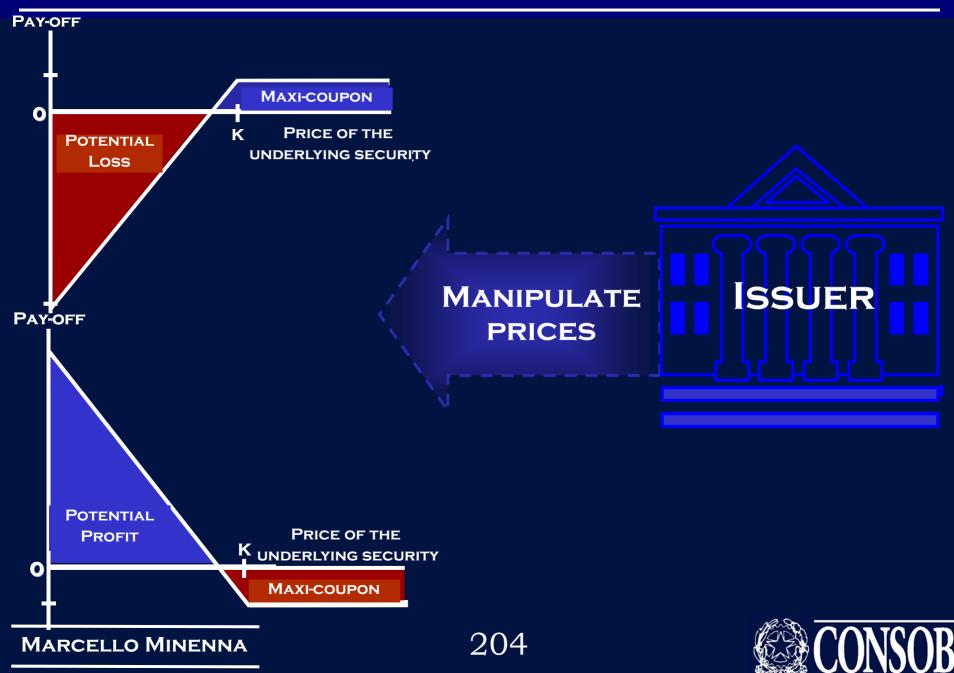
4. HEDGING CHOISES OF FINANCIAL INSTITUTIONS

THEY DON'T HEDGETHEY HEDGETHEMSELVESTHEMSELVES

MARCELLO MINENNA

THE ISSUER DOES NOT **HEDGE THE FINANCIAL RISK CONNECTED TO THE REVERSE BECAUSE ...**


... BECAUSE HE IS AN OPTION'S BUYER ...


MARCELLO MINENNA

... AND BECAUSE HE HAS FIXED THE PRICE

... BECAUSE THE PURCHASE OF AN

OPTION ...

... IS PART OF THE MOST GENERAL SYSTEM OF RISK MANAGEMENT

MARCELLO MINENNA

FINANCIAL INSTITUTIONS FIX LIMITS IN TERMS OF GREEK LETTERS:

• SECURITY • MARKET

FINANCIAL INSTITUTIONS FIX LIMITS IN TERMS OF GREEK LETTERS:

• SECURITY • MARKET

THE RESULTS THAT WE ARE GOING TO SHOW ARE EASILY EXTENSIBLE

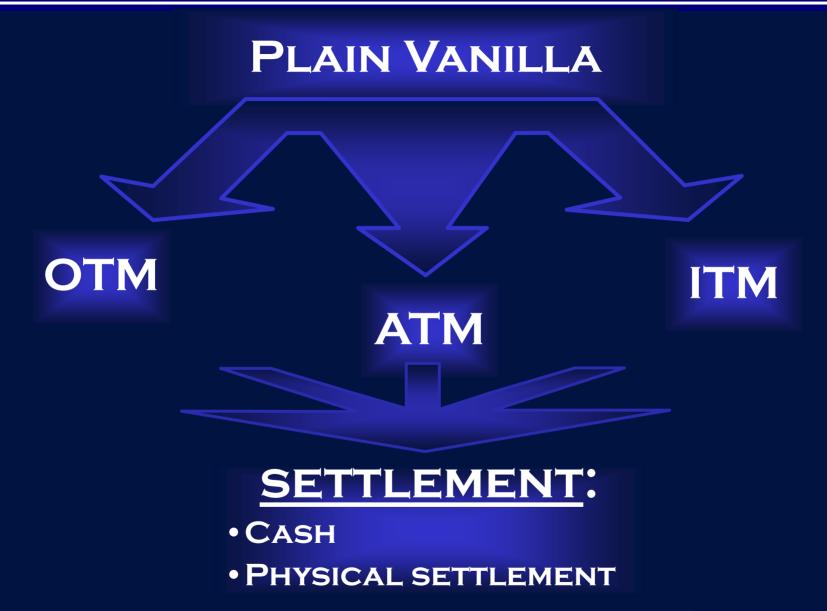
MARCELLO MINENNA

CASE STUDIES

PLAIN VANILLA

OTM ATM ITM

SETTLEMENT:


CASHPHYSICAL SETTLEMENT

MARCELLO MINENNA

210

KNOCK-IN

MARCELLO MINENNA

PLAIN VANILLA

SETTLEMENT BY PHYSICAL DELIVERY

MICRO-MANIPULATIONS

MARCELLO MINENNA

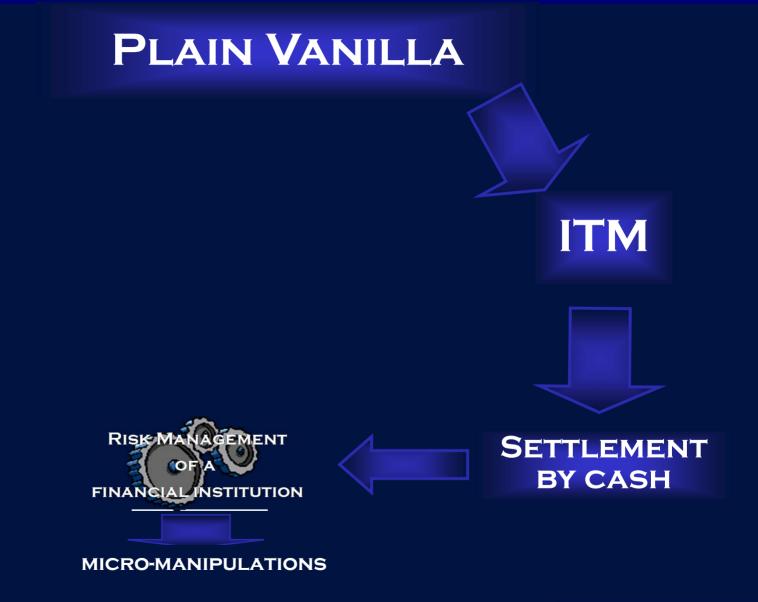
SETTLEMENT BY CASH

MICRO-MANIPULATIONS

MARCELLO MINENNA

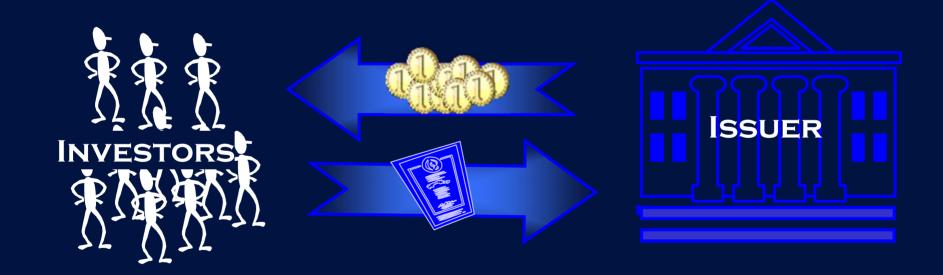
PLAIN VANILLA

SETTLEMENT BY PHYSICAL DELIVERY


MICRO-MANIPULATIONS

214

ITM



MARCELLO MINENNA

WHY IS THERE MICRO-MANIPULATION?

FINANCIAL INSTITUTION IS A PUTS' NET BUYER

CLOSE TO MATURITY ...

IT WILL HOLD

<u>A LARGE AMOUNT</u> OF

THE STOCKS UNDERLYING

THE PUT

AT MATURITY THE OPTION IS ITM

IT WILL HOLD <u>ALL</u> THE STOCKS

UNDERLYING THE PUTS

218

IN ORDER TO SETTLE THE OPTION'S PAY-OFF ...

IT WILL SELL ALL THE STOCKS

So called 'risk unwinding'

SELLING ALL THE STOCKS ...

IT WILL CAUSE A FALL IN PRICES OF THE SECURITY

MARCELLO MINENNA

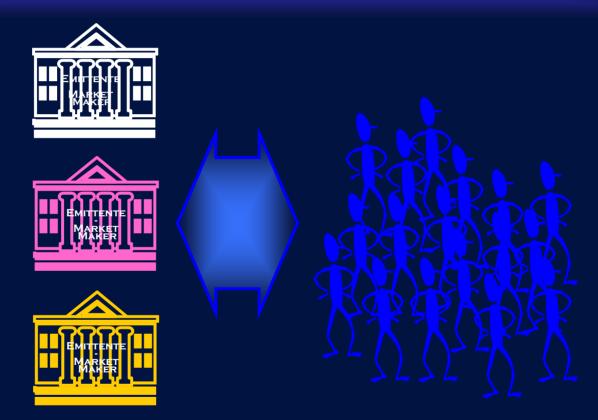
220

DRIVING A FALL IN PRICES ...

IT WILL INCREASE

THE INVESTOR'S LOSS

221



A SUMMARY CONDUCTED THROUGH....

MARCELLO MINENNA

DELTA HEDGING ANALYSIS

MARCELLO MINENNA

THE POINT OF VIEW

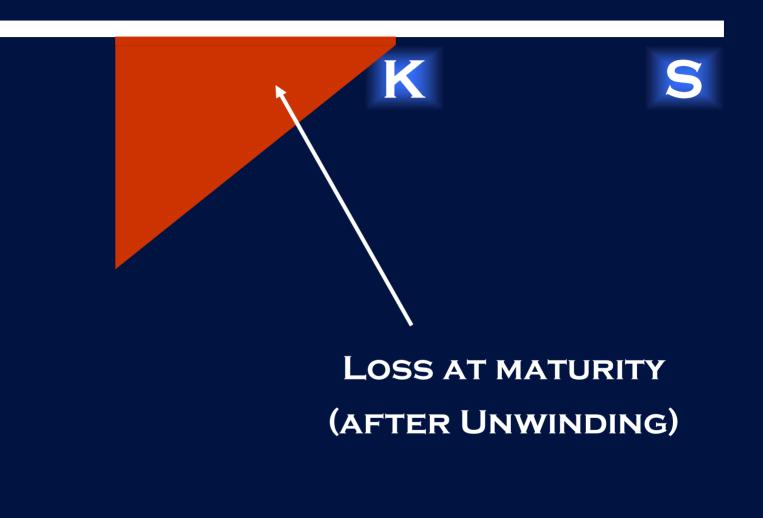
MARCELLO MINENNA

225

K

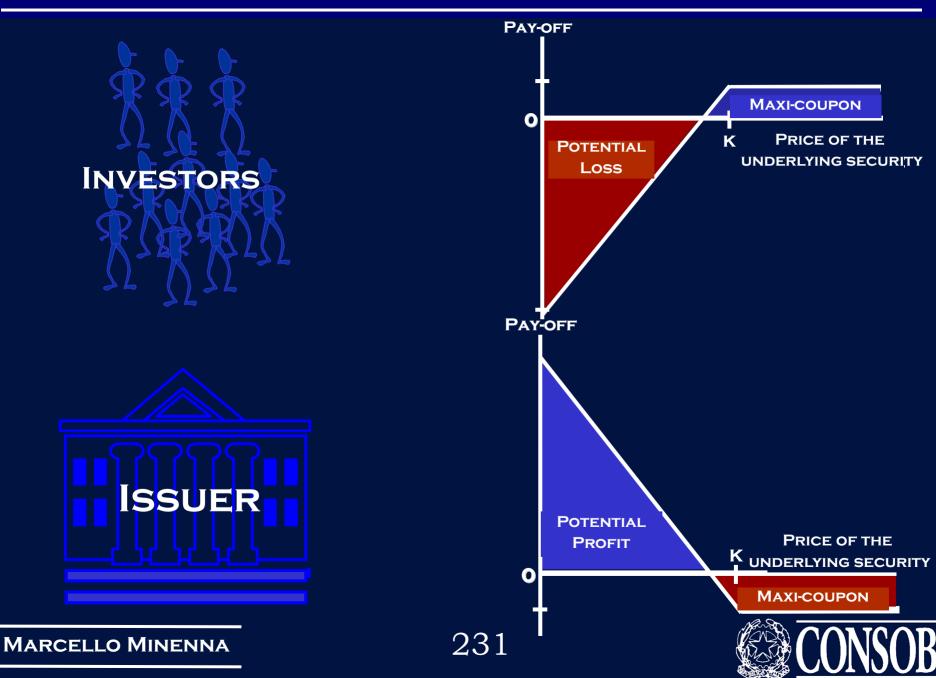
THE POINT OF VIEW

MARCELLO MINENNA



LOSS BEFORE MATURITY (BEFORE UNWINDING)

K


LOSS INCREMENT

K

REVERSE CONVERTIBLE

PLAIN VANILLA

PROBLEMS CONNECTED TO

THE SO CALLED 'VIEW'

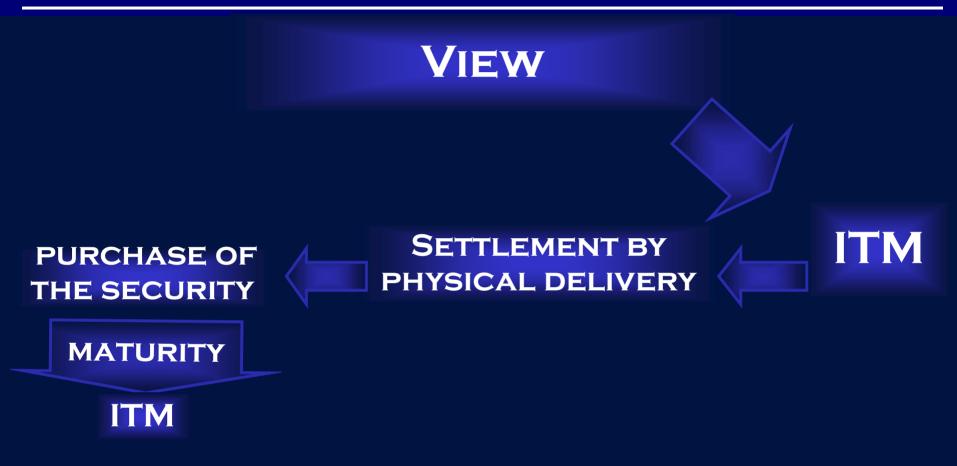
MICRO-MANIPULATIONS

232

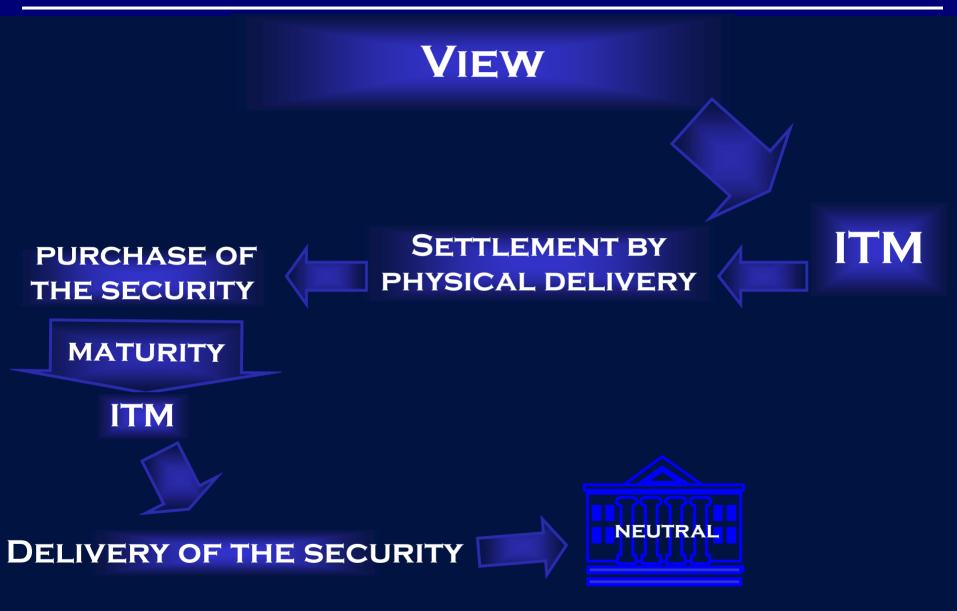
FINANCIAL INSTITUTIONS ACTS CLOSE

BOTH TO MATURITY AND STRIKE

THEY HAVE TO CHOOSE IF IT IS (OR NOT) THE CASE TO COMPLETE THE HEDGING ACTIVITY (SO CALLED VIEW)

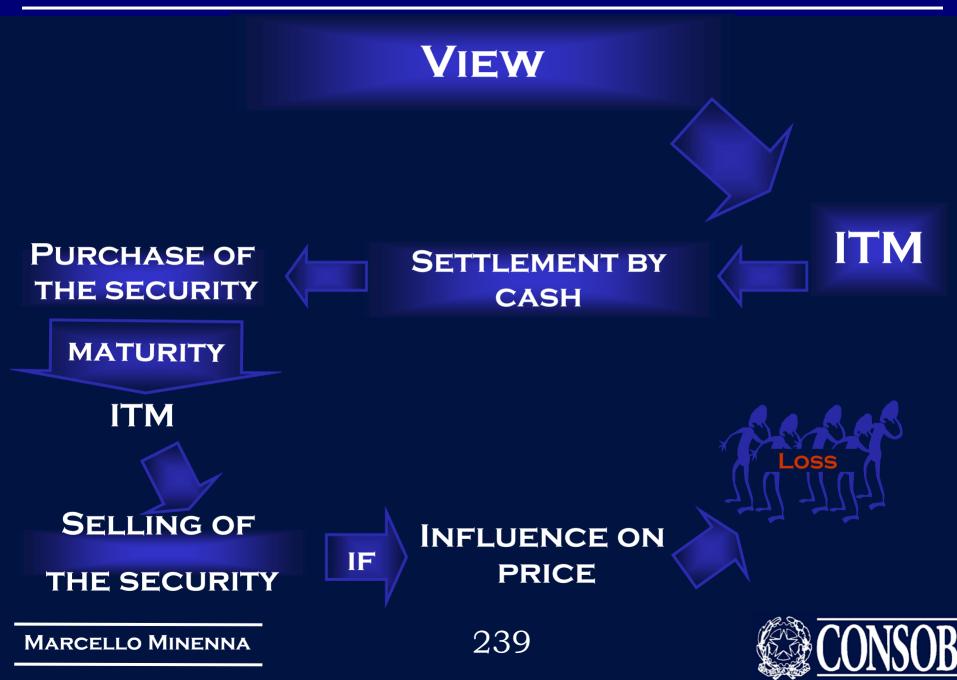

MARCELLO MINENNA

233

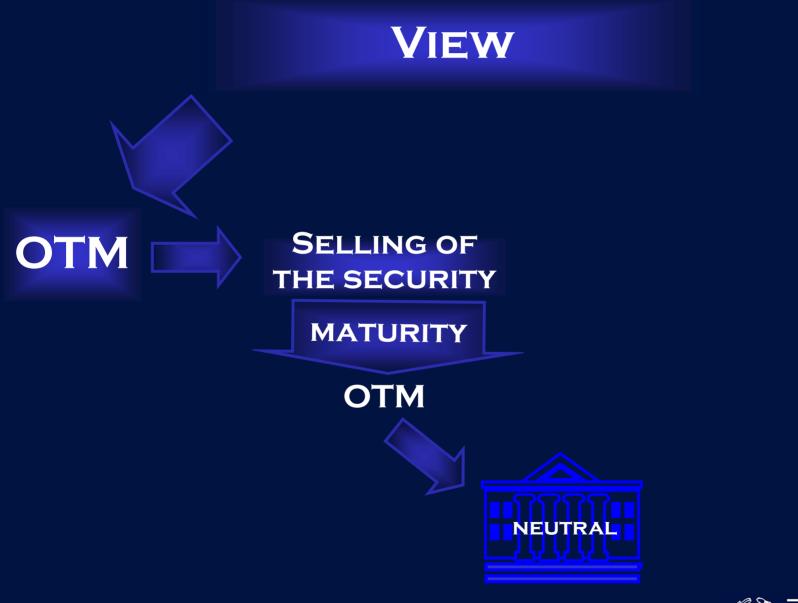


MARCELLO MINENNA

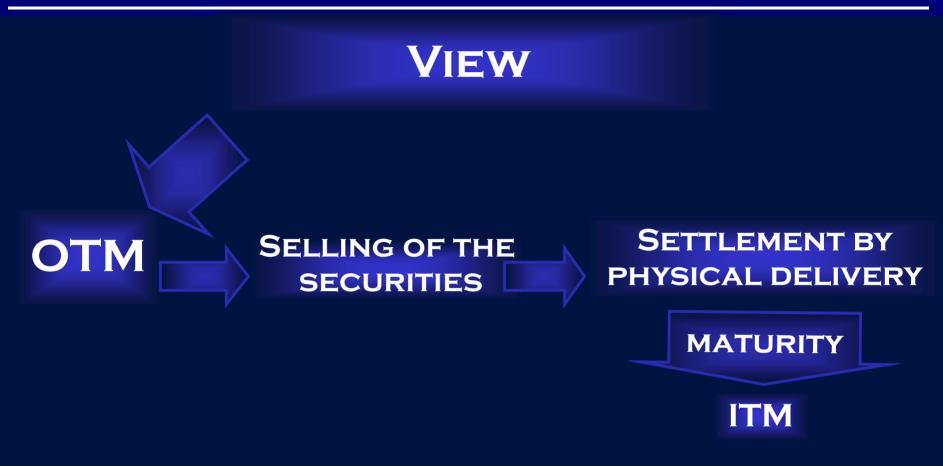
236

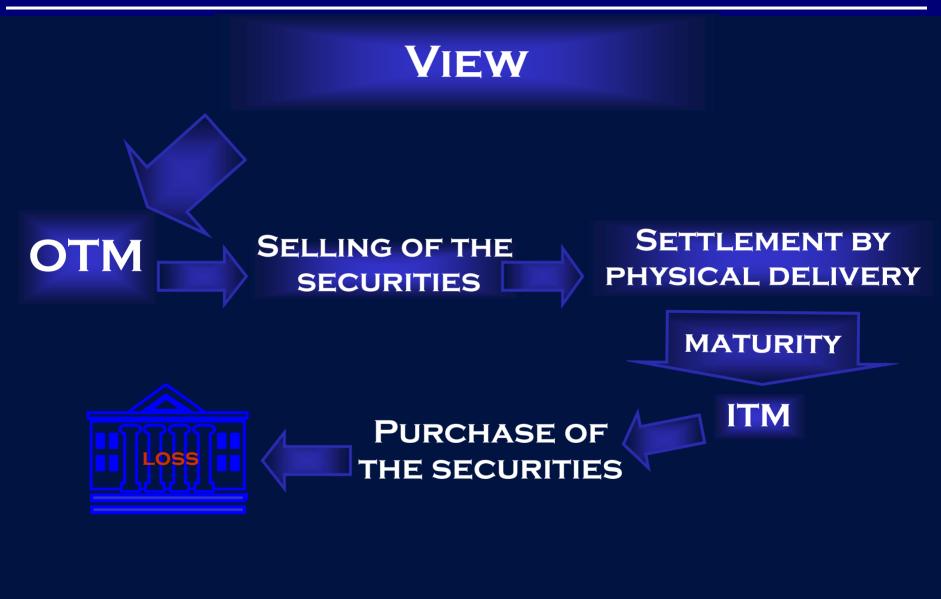


OTM SELLING OF THE SECURITY

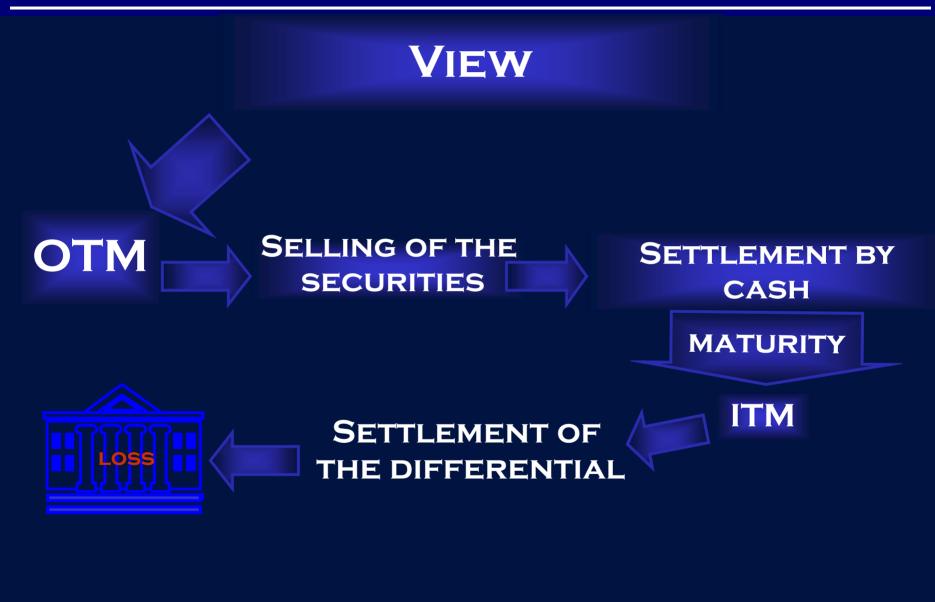


MARCELLO MINENNA


246



MARCELLO MINENNA



MARCELLO MINENNA

SUMMARY

View	Expiry date	Settlement	Fin.Institution
ITM	ITM	Cash Settlement	Profit
11	П	physical delivery	Neutral
ITM	OTM	Cash Settlement	Loss
11	П	physical delivery	Loss
OTM	ITM	Cash Settlement	Loss
11	П	physical delivery	Loss
OTM	OTM	Cash Settlement	Neutral
"	"	physical delivery	Neutral

ITM VIEW IS BETTER

MARCELLO MINENNA

253

FINANCIAL INSTITUTIONS CAN BE

TEMPTED TO CAUSE THE VIEW TO

COME TRUE

CASES OF MICROMANIPULATION

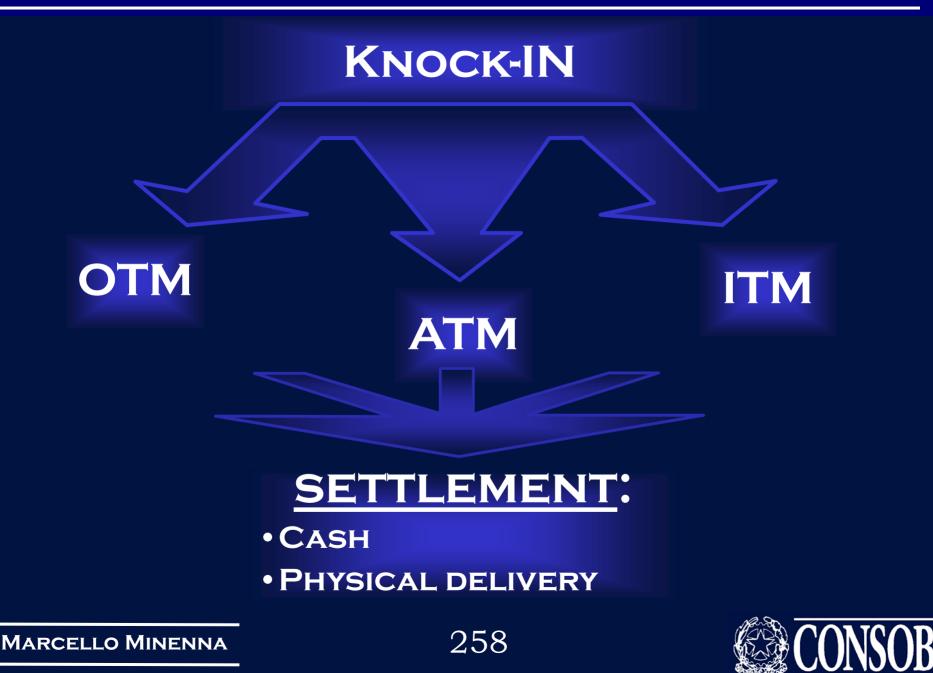
MARCELLO MINENNA

KNOCK-IN

DEF. : IT IS AN OPTION SUCH THAT WHEN A BARRIER IS CROSSED YOU HAVE A PLAIN VANILLA ONE

CASES OF MICROMANIPOLATION

CROSSING OF THE BARRIER


CASES OF MICROMANIPOLATION

CROSSING OF THE BARRIER

DEEP ITM OPTION

... AS A CONSEQUENCE OF WHAT HAVE BEEN

SAID BEFORE, WE WILL OMIT THE

KNOCK-IN

ATM

CROSS-REFERENCE

SEE WHAT HAVE BEEN SAID ABOUT

PLAIN VANILLA OPTIONS

MARCELLO MINENNA

259

ITM

... LET US FOCUS ON KNOCK-IN

260

ITM

INTRODUCTION:

RISK MANAGEMENT FOR A KNOCK-IN OPTION

NUMERIC GREEK LETTERS

NUMERIC GREEK LETTERS

MISTAKES IN CASE OF CLOSENESS

TO THE BARRIER

HEDGING OF A FINANCIAL INSTITUTION

LET US RECALL WHAT A NUMERIC

GREEK LETTER IS

$$\Delta = \frac{1}{2} (\Delta_{+1\%} + \Delta_{-1\%})$$

$$\Gamma = rac{1}{2}(\Gamma_{+1\%} + \Gamma_{-1\%})$$

$$v = \frac{1}{2}(v_{+1\%} + v_{-1\%})$$

... LET US OMIT THE OTHERS BECAUSE THEY ARE NOT VERY IMPORTANT

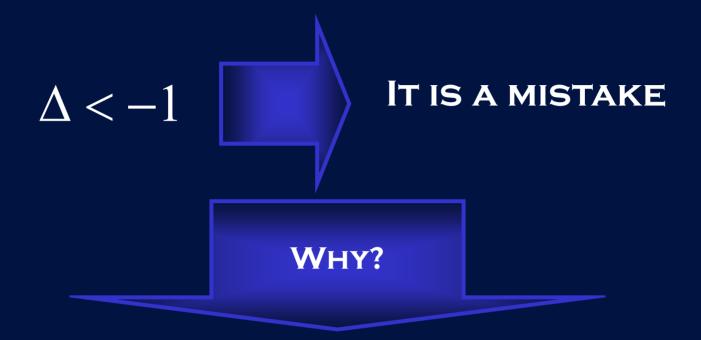
WHY DOES IT LEAD TO A MISTAKE?

BECAUSE IT COMPARES

DISOMOGENEOUS QUANTITIES

MARCELLO MINENNA

CLOSE (1%) TO THE BARRIER THE FORMULA BECOMES:


$$\Delta = \frac{1}{2} \left(\Delta^{\pm 1\%} - \Delta^{-1\%} \right)$$
$$\Delta^{\pm 1\%} = \frac{P_{plain-vanilla}^{1} - P_{Knock-in}^{0}}{S^{\pm 1\%} - S^{0}}$$

	K	Н		
	32,76	21,90		
	price	put	Δ numeric	
	22,600	8,410	-326%	
	22,550	8,574	-328%	
	22,500	8,738	-330%	
	22,450	8,904	-332%	
	22,400	9,071	-334%	
	22,350	9,238	-335%	
	22,300	9,407	-337%	
	22,250	9,576	-338%	
	22,200	9,745	-340%	
	22,150	9,916	-341%	
	22,100	10,086	-329%	
	22,050	10,258	-303%	
	22,000	10,429	-276%	
	21,950	10,601	-248%	
	21,900	10,771	-221%	
	21,850	10,821	-193%	
	21,800	10,870	-165%	
	21,750	10,920	-137%	
	21,700	10,970	-109%	
	21,650	11,020	-100%	
	21,600	11,070	-100%	
	21,550	11,120	-100%	
	21,500	11,170	-100%	
	21,450	11,220	-100%	
NN	IA		267	

 $\Delta < -1$

BECAUSE IT COMPARES DIFFERENT CONTINGENT CLAIMS

RISK MANAGEMENT BASED ON GREEK LETTERS REFERRED TO THE BARRIER OPTIONS

MISLEADING

... FURTHERMORE, IT CAN BE VERY EXPANSIVE

BECAUSE IT CAN REQUIRE BOTH CONTINUOUS AND RELEVANT PORTFOLIO REBALANCES

EXAMPLE:

K	Н	
32,76	21,90	
price	put	Δ numeric
22,150	9,916	-341%
21,950	10,601	-248%
22,200	9,745	-340%
21,910	10,739	-226%
22,000	10,429	-276%
22,050	10,258	-303%
21,920	10,704	-232%

FINANCIAL INSTITUTIONS DO NOT EMPLOY TRADITIONAL A HEDGING, BUT THEY USE SOME DEVICES, AT LEAST IN CASE OF CLOSENESS TO THE BARRIER

- Let us fix the maximum fluctuation of Δ to -1

- Let us use Θ in order to reduce the value of Δ

... NOT CLOSE TO THE BARRIER

... NOT CLOSE TO THE BARRIER

BECAUSE IT COMPARES CONTINGENT CLAIMS THAT ARE EQUAL

MARCELLO MINENNA

THE FORMULA BECOMES:

$$\Delta = \frac{1}{2} \left(\Delta^{+1\%} - \Delta^{-1\%} \right)$$
$$\Delta^{\pm 1\%} = \frac{P_{Knock-in}^{1} - P_{Knock-in}^{0}}{S^{\pm 1\%} - S^{0}}$$

MARKET MANIPULATION TARGETED TO CROSS THE BARRIER

VERY EXPANSIVE

WARNING IN THE RISK MANAGEMENT

CLOSE TO THE BARRIER

Adjusted Δ hedging works well

MARKET MANIPULATION TARGETED TO CROSS THE BARRIER

NOT EXPANSIVE

<u>NO</u> WARNING IN THE RISK MANAGEMENT

MARKET MANIPULATION TARGETED TO CROSS THE BARRIER

NOT EXPANSIVE

<u>NO</u> WARNING IN THE RISK MANAGEMENT

THE FINANCIAL INSTITUTION COULD BE TEMPTED TO CROSS THE BARRIER

... BUT IT IS NOT SURE THAT THE FINANCIAL INSTITUTION WILL ADOPT AN ADJUSTED GREEK HEDGING SYSTEM

... BUT IT IS NOT SURE THAT THE FINANCIAL INSTITUTION WILL ADOPT AN ADJUSTED GREEK HEDGING SYSTEM

... IF FOLLOWING THE TRADITIONAL HEDGING, CLOSE TO THE BARRIER, ALLOWS THE RISK MANAGEMENT TO OBTAIN "POSITIVE" EFFECTS

MARCELLO MINENNA

282

... BECAUSE AFTER HAVING REALIZED THAT

THE ACTIVITY CLOSE TO THE BARRIER

LEADS TO AN OVER-HEDGING, THE FINANCIAL

INSTITUTION DISINVESTS THE PART IN EXCESS

By selling securities

... BECAUSE AFTER HAVING REALIZED THAT

THE ACTIVITY CLOSE TO THE BARRIER

LEADS TO AN OVER-HEDGING, THE FINANCIAL

INSTITUTION DISINVESTS THE PART IN EXCESS

By selling securities

... AND THIS SELLING ACTIVITY CAN CAUSE A

FALL IN PRICE AND A BARRIER CROSSING

THE FINANCIAL INSTITUTION RESTORES THE \triangle HEDGING AT ITS MAXIMUM VALUE (-1) AND SELLS THE SECURITIES IN EXCESS

THE FINANCIAL INSTITUTION RESTORES THE \triangle HEDGING AT ITS MAXIMUM VALUE (-1) AND SELLS THE SECURITIES IN EXCESS

... BEING CLOSE TO THE BARRIER THE FINANCIAL INSTITUTION CAN REACH THE TARGET TO CROSS IT

MARCELLO MINENNA

286

... AND WHAT HAS BEEN SAID BEFORE, HAPPENS IN AN APPARENT SITUATION OF CORRECTIVENESS

... FOR THE KNOCK-IN OPTIONS ...

... FOR THE KNOCK-IN OPTIONS ...

NOT CORRECT RISK MANAGEMENT

NOT CORRECT FINANCIAL INSTITUTION

288

HEDGING OF A FINANCIAL INSTITUTION

RISK MANAGEMENT OF A FINANCIAL INSTITUTION

REVERSE CONVERTIBLE

MARCELLO MINENNA

PLAIN-VANILLA OPTIONS

COVERED WARRANT

MARCELLO MINENNA

AFTER BUYING ...

DIVISIONE RELAZIONI

291

ESTERNE

AFTER BUYING ...

WHAT TO DO?

LET US NEGOTIATE

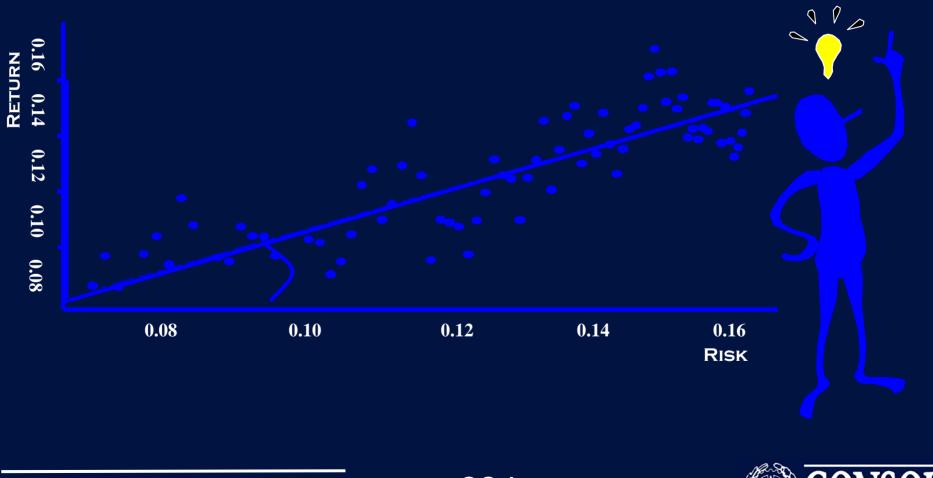
DIVISIONE RELAZIONI

ESTERNE

AFTER BUYING ...

WHAT TO DO?

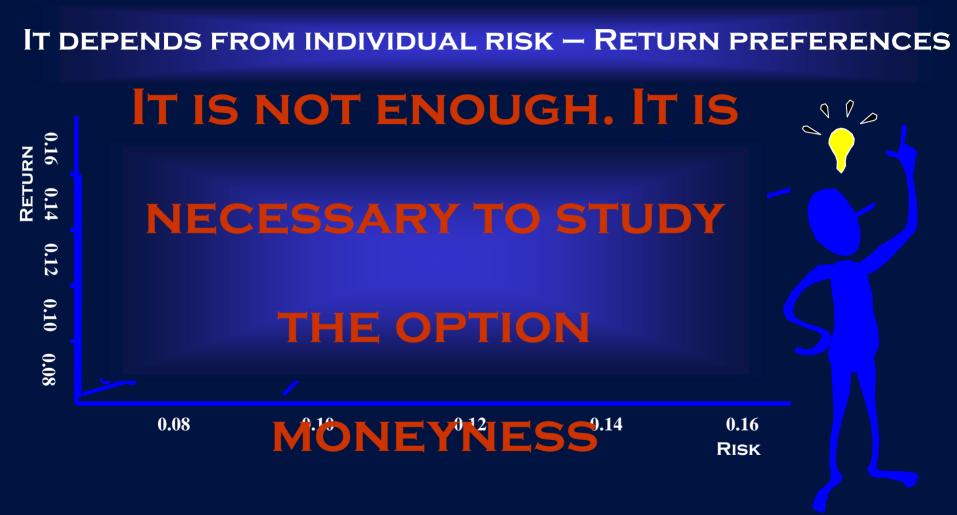
LET US WAIT FOR THE MATURITY


DIVISIONE RELAZIONI

ESTERNE

COVERED WARRANT – WHAT TO DO AFTER?

IT DEPENDS FROM INDIVIDUAL RISK – RETURN PREFERENCES



DIVISIONE RELAZIONI

ESTERNE

COVERED WARRANT – WHAT TO DO AFTER?

COVERED WARRANT – WHAT TO DO AFTER?

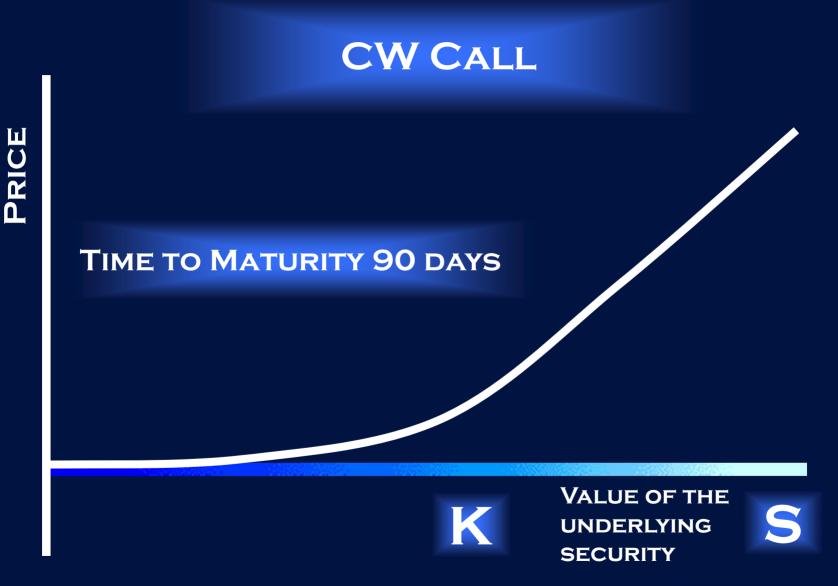
CW IN-THE-MONEY CW AT-THE-MONEY CW OUT-THE-MONEY

DIVISIONE RELAZIONI

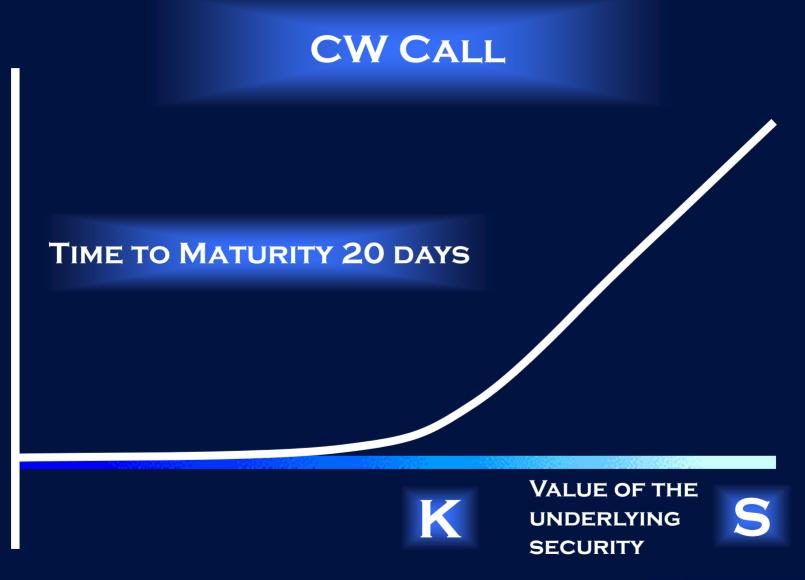
ESTERNE

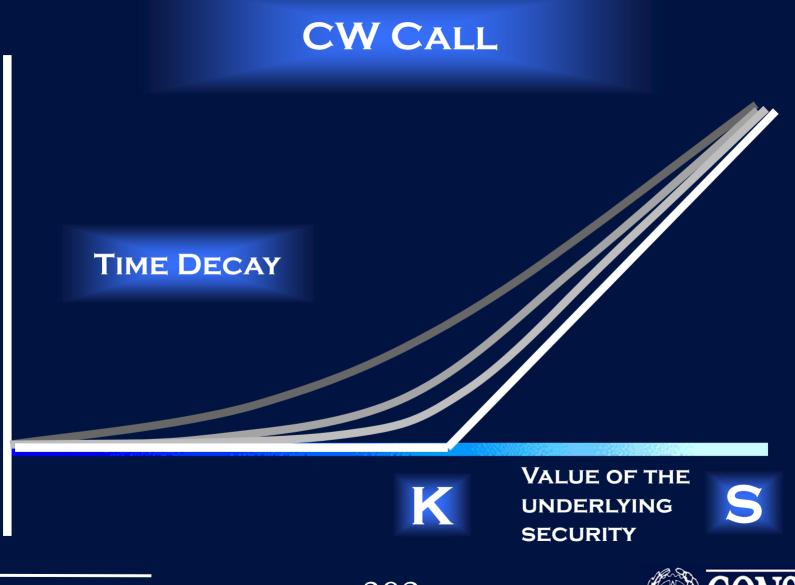
CW OUT-THE-MONEY

PROBLEMS OF THE MINIMUM TICK WITH REGARD TO THE TRADING INSTRUMENTS


DIVISIONE RELAZIONI

ESTERNE




PRICE

301

K

MARCELLO MINENNA

PRICE

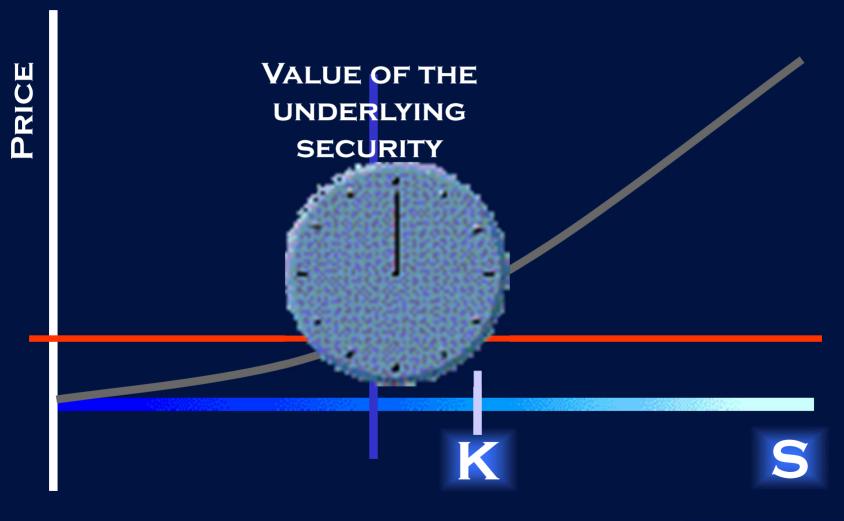
302

)B

MARCELLO MINENNA

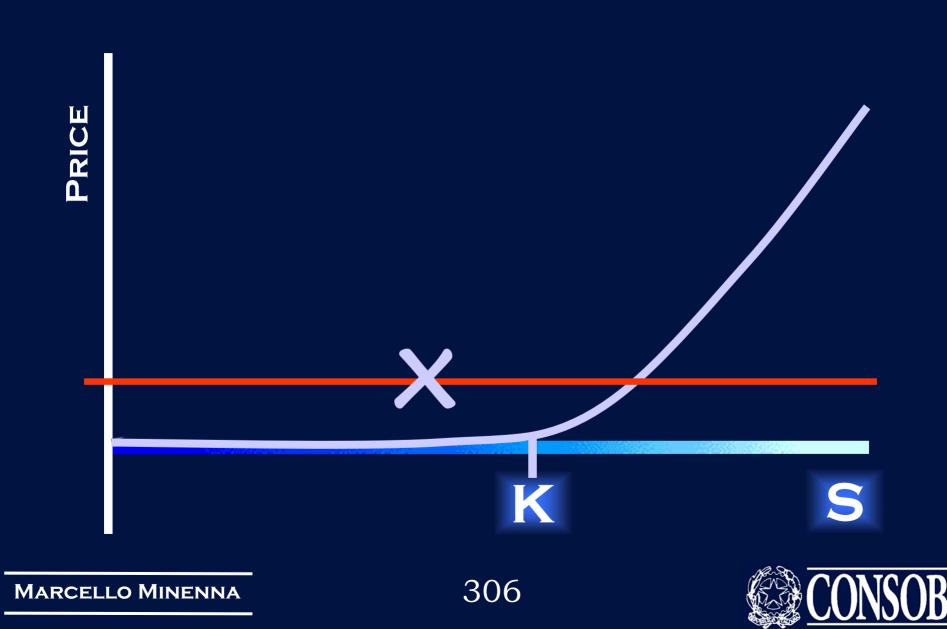
VALUE OF THE UNDELYING SECURITY

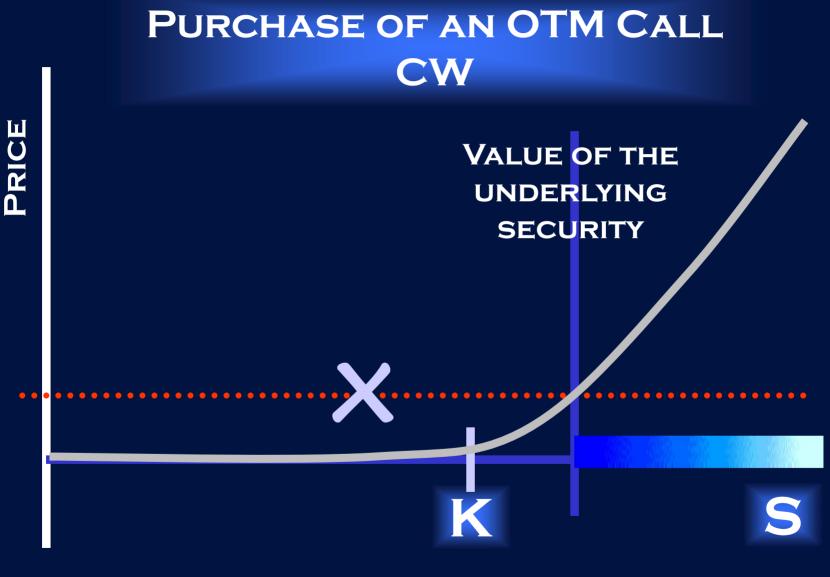
MARCELLO MINENNA


PRICE

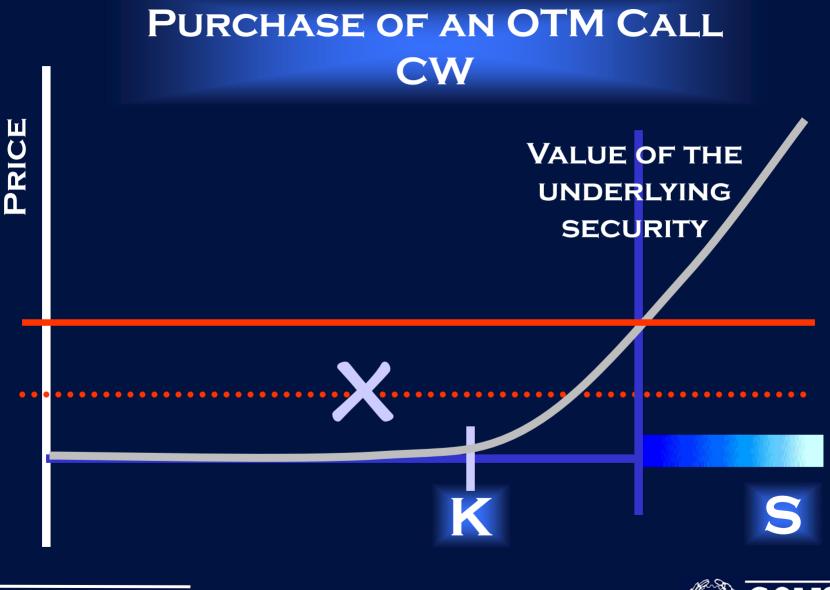
304

K




S

MARCELLO MINENNA

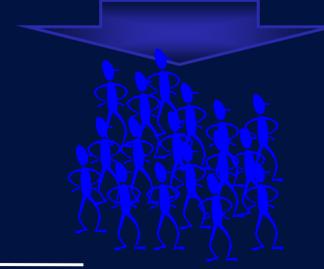


MARCELLO MINENNA

MARCELLO MINENNA

PROBLEMS REGARDING THE TRADING INSTRUMENTS

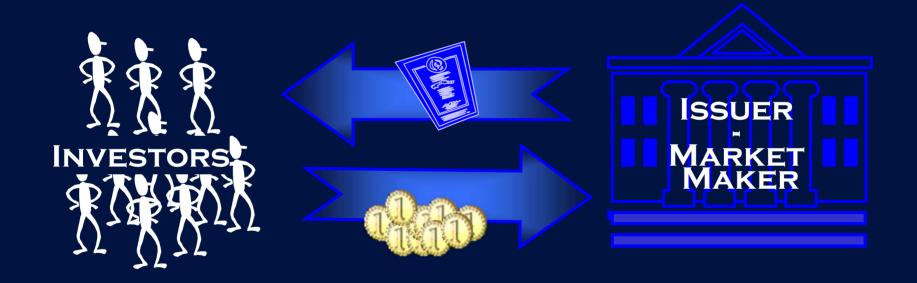
OTM COVERED WARRANT HARDLY RECOVER THE INVESTMENT VALUE


MARCELLO MINENNA

CW IN-THE-MONEY

PROBLEMS REGARDING THE RISK MANAGEMENT

OF THE FINANCIAL INSTITUTION



EXAMPLE

FINANCIAL INSTITUTION IS A NET SELLER OF CALLS

CLOSE TO MATURITY ...

AT MATURITY THE OPTION IS ITM.....

HE WILL HOLD IN HIS

PORTFOLIO ALL THE STOCKS

UNDERLYING THE CALLS

IN ORDER TO SETTLE THE OPTION'S PAY-OFF ...

HE WILL SELL ALL THE STOCKS.

SO CALLED 'RISK UNWINDING'

MARCELLO MINENNA

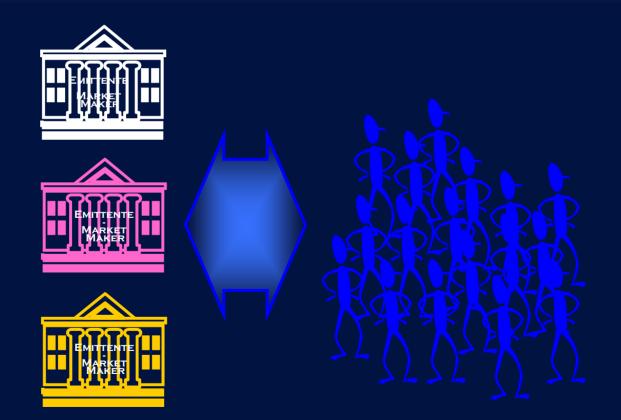
SELLING ALL THE STOCKS ...

DRIVING A FALL IN PRICES ...

HE WILL REDUCE THE

INVESTOR'S POTENTIAL GAIN

MARCELLO MINENNA


ALL THE STORY CAN BE SUMMARIZED THROUGH...

MARCELLO MINENNA

ALL THE STORY CAN BE SUMMARIZED THROUGH...

DELTA HEDGING ANALYSIS

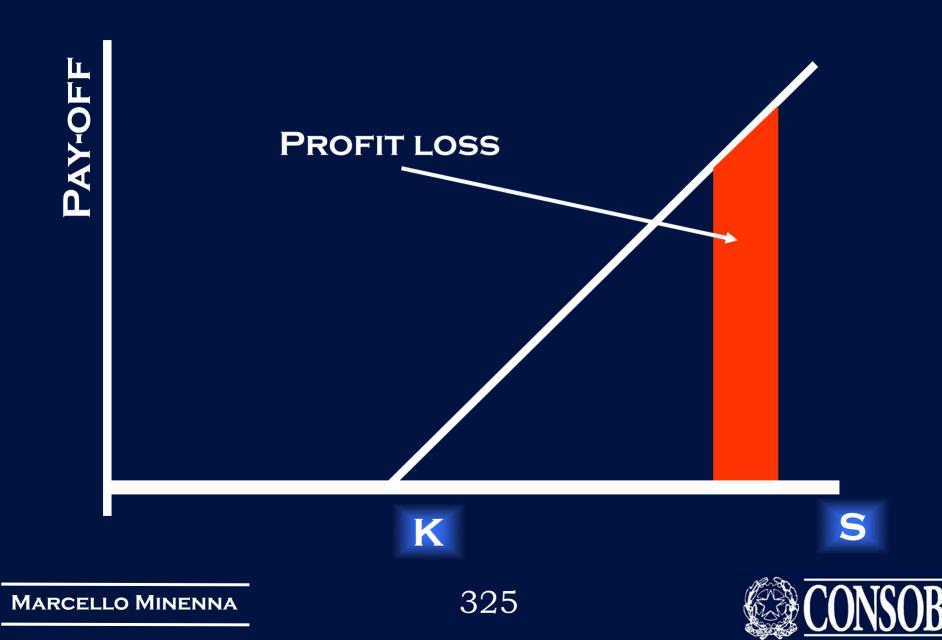
MARCELLO MINENNA

THE POINT OF VIEW

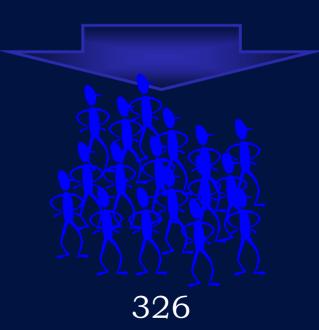
MARCELLO MINENNA


THE POINT OF VIEW

MARCELLO MINENNA



S


DELTA HEDGING ON A SHORT CALL POSITION

CW AT-THE-MONEY – WHAT TO DO AFTER?

CW AT-THE-MONEY

PROBLEMS CONNECTED TO THE SO CALLED 'VIEW'

MARCELLO MINENNA

THE STOCK IS CLOSE

BOTH TO MATURITY AND STRIKE

FINANCIAL INSTITUTIONS WILL HAVE TO CHOOSE IF IT IS THE CASE TO COMPLETE OR NOT THE HEDGING (SO CALLED VIEW)

MARCELLO MINENNA

PROBLEMS CONNECTED TO THE SO CALLED 'VIEW'

Short 1000 call on 1 stock				(Option and Δ		Stock and Δ				∆ Portfolio
			Option	Q.	Δ						
Time Step	Time to Expiration	STOCK PRICE	Value	Opz.	call	∆ call Posit.	Stock to Buy/(Sell)	Warehouse	Δ Stock	∆ Stock Posit.	Total ∆ position
0	0,2500	100,0	10,3776	(1.000)	0,56411596	(564)	564	564	1	564	-
1	0,2375	103,0	11,8661	(1.000)	0,609628	(610)	46	610	1	610	-
2	0,2250	103,7	12,0368	(1.000)	0,6207246	(621)	11	621	1	621	-
3	0,2125	101,7	10,5181	(1.000)	0,58779993	(588)	(33)	588	1	588	-
4	0,2000	96,5	7,4017	(1.000)	0,49399277	(494)	(94)	494	1	494	-
5	0,1875	95,6	6,6706	(1.000)	0,47264412	(473)	(21)	473	1	473	-
6	0,1750	98,0	7,5759	(1.000)	0,51590073	(516)	43	516	1	516	-
7	0,1625	103,7	10,4769	(1.000)	0,62159169	(622)	106	622	1	622	-
8	0,1500	104,0	10,3404	(1.000)	0,62848623	(628)	6	628	1	628	-
9	0,1375	102,0	8,7708	(1.000)	0,58982183	(590)	(38)	590	1	590	-
10	0,1250	99,0	6,7342	(1.000)	0,5231959	(523)	(67)	523	1	523	-
11	0,1125	98,0	5,8476	(1.000)	0,49554047	(496)	(27)	496	1	496	-
12	0,1000	101,0	7,0373	(1.000)	0,56586158	(566)	70	566	1	566	-
13	0,0875	103,0	7,7894	(1.000)	0,61640622	(616)	50	616	1	616	-
14	0,0750	100,5	5 <i>,</i> 8907	(1.000)	0,55119095	(551)	(65)	551	1	551	-
15	0,0625	98,0	4,0990	(1.000)	0,46817516	(468)	(83)	468	1	468	-
16	0,0500	104,0	6,9440	(1.000)	0,66410039	(664)	196	664	1	664	-
17	0,0375	99,0	3,4276	(1.000)	0,48390678	(484)	(180)	484	1	484	-
18	0,0250	104,0	5,6701	(1.000)	0,70807478	(708)	224	708	1	708	-
19	0,0125	102,0	3,4230	(1.000)	0,65206982	(652)	(56)	652	1	652	-

PROBLEMS CONNECTED TO THE SO CALLED 'VIEW'

Short 1000 call on 1 stock				(Dption and Δ			∆ Portfolio			
			Option	Q.	Δ						
Time Step	Time to Expiration	STOCK PRICE	Value	Opz.	call	∆ call Posit.	Stock to Buy/(Sell)	Warehouse	$\Delta \\ { m Stoc} \\ { m k}$	∆ Stock Posit.	Total Δ position
0	0,2500	100,0	10,3776	(1.000)	0,56411596	(564)	564	564	1	564	-
1	0,2375	103,0	11,8661	(1.000)	0,609628	(610)	46	610	1	610	-
2	0,2250	103,7	12,0368	(1.000)	0,6207246	(621)	11	621	1	621	-
3	0,2125	101,7	10,5181	(1.000)	0,58779993	(588)	(33)	588	1	588	-
4	0,2000	96,5	7,4017	(1.000)	0,49399277	(494)	(94)	494	1	494	-
5	0,1875	95,6	6,6706	(1.000)	0,47264412	(473)	(21)	473	1	473	-
6	0,1750	98,0	7 <i>,</i> 5759	(1.000)	0,51590073	(516)	43	516	1	516	-
7	0,1625	103,7	10,4769	(1.000)	0,62159169	(622)	106	622	1	622	-
8	0,1500	104,0	10,3404	(1.000)	0,62848623	(628)	6	628	1	628	-
9	0,1375	102,0	8,7708	(1.000)	0,58982183	(590)	(38)	590	1	590	-
10	0,1250	99,0	6,7342	(1.000)	0,5231959	(523)	(67)	523	1	523	-
11	0,1125	98,0	5,8476	(1.000)	0,49554047	(496)	(27)	496	1	496	-
12	0,1000	101,0	7,0373	(1.000)	0,56586158	(566)	70	566	1	566	-
13	0,0875	103,0	7,7894	(1.000)	0,61640622	(616)	50	616	1	616	-
14	0,0750	100,5	5 <i>,</i> 8907	(1.000)	0,55119095	(551)	(65)	551	1	551	-
15	0,0625	98,0	4,0990	(1.000)	0,46817516	(468)	(83)	468	1	468	-
16	0,0500	104,0	6,9440	(1.000)	0,66410039	(664)	196	664	1	664	-
17	0,0375	99,0	3,4276	(1.000)	0,48390678	(484)	(180)	484	1	484	-
18	0,0250	104,0	5,6701	(1.000)	0,70807478	(708)	224	708	1	708	-
19	0,0125	102,0	3,4230	(1.000)	0,65206982	(652)	(56)	652	1	652	-
20	0,0000	98,0	-	(1.000)	0	-	(652)	-	1	-	-

MARCELLO MINENNA

R

PROBLEMS CONNECTED TO THE SO CALLED 'VIEW'

Short 1000 call on 1 stock				(Option and Δ		Stock and Δ				∆ Portfolio
			Option	Q.	Δ						
Time Step	Time to Expiration	STOCK PRICE	Value	Opz.	call	∆ call Posit.	Stock to Buy/(Sell)	Warehouse	$\Delta \\ { m Stoc} \\ { m k}$	∆ Stock Posit.	Total ∆ position
0	0,2500	100,0	10,3776	(1.000)	0,56411596	(564)	564	564	1	564	-
1	0,2375	103,0	11,8661	(1.000)	0,609628	(610)	46	610	1	610	-
2	0,2250	103,7	12,0368	(1.000)	0,6207246	(621)	11	621	1	621	-
3	0,2125	101,7	10,5181	(1.000)	0,58779993	(588)	(33)	588	1	588	-
4	0,2000	96,5	7,4017	(1.000)	0,49399277	(494)	(94)	494	1	494	-
5	0,1875	95,6	6,6706	(1.000)	0,47264412	(473)	(21)	473	1	473	-
6	0,1750	98,0	7 <i>,</i> 5759	(1.000)	0,51590073	(516)	43	516	1	516	-
7	0,1625	103,7	10,4769	(1.000)	0,62159169	(622)	106	622	1	622	-
8	0,1500	104,0	10,3404	(1.000)	0,62848623	(628)	6	628	1	628	-
9	0,1375	102,0	8,7708	(1.000)	0,58982183	(590)	(38)	590	1	590	-
10	0,1250	99,0	6,7342	(1.000)	0,5231959	(523)	(67)	523	1	523	-
11	0,1125	98,0	5,8476	(1.000)	0,49554047	(496)	(27)	496	1	496	-
12	0,1000	101,0	7,0373	(1.000)	0,56586158	(566)	70	566	1	566	-
13	0,0875	103,0	7,7894	(1.000)	0,61640622	(616)	50	616	1	616	-
14	0,0750	100,5	5,8907	(1.000)	0,55119095	(551)	(65)	551	1	551	-
15	0,0625	98,0	4,0990	(1.000)	0,46817516	(468)	(83)	468	1	468	-
16	0,0500	104,0	6,9440	(1.000)	0,66410039	(664)	196	664	1	664	-
17	0,0375	99,0	3,4276	(1.000)	0,48390678	(484)	(180)	484	1	484	-
18	0,0250	104,0	5,6701	(1.000)	0,70807478	(708)	224	708	1	708	-
19	0,0125	102,0	3,4230	(1.000)	0,65206982	(652)	(56)	652	1	652	-
20	0,0000	101,0	1,0000	(1.000)	1	(1.000)	348	1.000	1	1.000	-

F

MARCELLO MINENNA

A VIEW'S MISTAKE CAN CAUSE A HIGH COST TO THE FINANCIAL INSTITUTION

CASES OF MICROMANIPULATION IN ORDER TO MAKE THE VIEW 'COME TRUE'

MARCELLO MINENNA

CASES OF MICROMANIPULATION IN ORDER TO MAKE THE *VIEW* 'COME TRUE'

FINAL REMARKS

THE QUANT ENFORCEMENT

CASES OF MICROMANIPULATION

MARCELLO MINENNA

THE QUANT ENFORCEMENT

ACTIVITY OF THE FINANCIAL INSTITUTION ...

MARCELLO MINENNA

THE QUANT ENFORCEMENT

... THE FINANCIAL INSTITUTION'S PLACING WITH REFERENCE TO THE BOUNDS OF RISK MANAGEMENT

MARCELLO MINENNA

... BECAUSE FINANCIAL INSTITUTIONS

SOMETIMES JUSTIFY THEIR ACTIVITY AS

CONNECTED TO THE INDICATIONS OF

RISK MANAGEMENT TOOLS

