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Abstract

In the last decade, fast Fourier transform methods (i.e. FFT) have become the standard tool for pricing and hedging with affine jump
diffusion models (i.e. AJD), despite the FFT theoretical framework is still in development and it is known that the early solutions have
serious problems in terms of stability and accuracy. This fact depends from the relevant computational gain that the FFT approach offers
with respect to the standard Fourier transform methods that make use of a canonical inverse Levy formula. In this work we revisit a
classic FT method and find that changing the quadrature algorithm and using alternative, less flawed, representation for the pricing for-
mulas can improve the computational performance up to levels that are only three time slower than FFT can achieve. This allows to have
at the same time a reasonable computational speed and the well known stability and accuracy of canonical FT methods.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Affine jump diffusion model are quite the most studied
and well known Black–Scholes–Merton extensions. Their
great analytical tractability and the presence of closed
option pricing formulas make these models the ideal candi-
dates to replace Black–Scholes–Merton in options pricing
and hedging. One major issue is that the calibration to mar-
ket prices of complex option pricing models with more
parameters than a simple Black–Scholes volatility is still
an open problem in financial mathematics. However, in
the last decade, despite these well known aspects – specifi-
cally summarizable in the non-linearity, in the non-convex-
ity of the optimization problem and in the numerical
instability of pricing algorithms – the FFT approach has
0378-4266/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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become the standard tool for pricing and hedging in the
AJD context. This fact is due to the extraordinary gain
in terms of computational speed that the FFT approach
can achieve respect with the canonical inverse Levy for-
mula developed at first in Heston (1993). The work of Carr
and Madan (1999) makes possible for the first time the use
of FFT algorithms in the context of option pricing. This
method now allows to price and hedge in real time using
models that are far beyond Black–Scholes–Merton, and a
great number of empirical studies has adopted it enthusias-
tically. From our point of view, this massive shift towards
the use of a innovative tool that is still in development, has
greatly underestimated the problems, that are typical of a
work in progress and not completely assessed, of stability
and accuracy in pricing. In fact, few studies in literature
have pointed out the accuracy problem inherent to Carr–
Madan method, if applied just as it has been developed,
for other option pricing model. In fact, their solution iden-
tifies a peculiar choice of the recombinant parameters that
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cannot be applied tout – court to all the models. A detailed
discussion of the main issues involved can be found in Lee
(2004). The classic Fourier transform method, on the other
side, has not this type of problems and it can be greatly
improved by simply changing to more accurate quadrature
schemes and rewriting the pricing formula in order to avoid
numerical instability problems. In this work the canonical
method, as it appears in Heston, is analyzed in depth, rear-
ranged with alternative formulations of the pricing formu-
las for the basic AJD models, and implemented with a new,
robust Gauss–Lobatto quadrature scheme, as seen in Gan-
der and Gautschi (2000). The results are an improved sta-
bility of the pricing formula and the calibration procedure,
a great accuracy and a boosted speed of computation, far
beyond than expected: in the better conditions, the
Gauss–Lobatto scheme applied on the alternative formulas
is only three times slower than FFT speed performances.
Obviously, these computational times are not (yet) compat-
ible with an operational use, but allow, for empirical stud-
ies, to have at the same time a reasonable computational
speed and the well known stability and accuracy of canon-
ical FT methods.

The work is structured in the following way: in the sec-
ond and third section, the Black–Scholes–Merton model is
considered as the simplest affine model, and the pricing for-
mulas used in the empirical work, i.e. the formulas via the
different Fourier transform methods (the FT canonical
one, and FFT method as in Carr–Madan) are briefly pre-
sented, with the analytic connection with the classic
formula.

The fourth section shows the classic AJD models (Hes-
ton, Merton, Bakshi–Cao–Chen) as natural generalizations
of Black–Scholes–Merton model and derives, with details
on the space transformations, the original and equivalent
alternative formulas via FT.

Section 5 presents an analytical derivation of the AJD
Greeks in the Black–Scholes–Merton style. The sixth sec-
tion presents the numerical procedures tested and the
empirical results in pricing, calibration and computation
of the Greeks. Section 7 concludes.
1 Carr and Madan (1999).
2. The Black–Scholes–Merton model via Fourier transform

Theorem 1. The Black–Scholes–Merton price of a CALL at

the initial time t ¼ 0, expressed in the form

C0 ¼ S0Nðd1Þ � Ke�rT Nðd2Þ; ð1Þ

where

d1 ¼
ln S0 þ ðr þ r2

2
ÞT � ln K

r
ffiffiffiffi
T
p ; ð2Þ

d2 ¼
ln S0 þ ðr � r2

2
ÞT � ln K

r
ffiffiffiffi
T
p ð3Þ

and
NðdkÞ ¼
1ffiffiffiffiffiffi
2p
p

Z dk

�1
e�

1
2u2

du

has an equivalent representation in the form

C0 ¼ S0P 1 � Ke�rT P 2;

where

P k xs¼0 P ln½K�jxs½ �

¼ 1

2
þ 1

p

Z 1

0

R
e�in ln½K�

in
f
�

kðxs¼0; njxsÞ
� �

dn ð4Þ

and

f
�

kðxs¼0; njxsÞ ¼ eCðkÞs þinxs

for k ¼ 1; 2, with

Cð1Þs ¼ rinsþ 1

2
r2½inðinþ 1Þ�s;

Cð2Þs ¼
1

2
r2inðin� 1Þsþ rins:

Proposition 2. The equivalence between P k and NðdkÞ:

The probability functions P k in the form (4), for k ¼ 1; 2
are equivalent representations of normal probability func-

tions, i.e.

P k ¼
1ffiffiffiffiffiffi
2p
p

Z dk

�1
e�

z2

2 dz ¼ NðdkÞ; ð5Þ

where dk for k ¼ 1; 2 are given by formulas (2), (3).
3. The Black–Scholes–Merton model via fast Fourier

transform

Theorem 3. Let the log-spot price risk neutral density be of

the form

qT ðln ST Þ ¼
1

r ln ST

ffiffiffiffiffiffiffiffiffi
2pT
p e�

½ln ST �ln S0�ðr�r2

2
ÞT �2

2r2T ;

i.e. the density function of a normally distributed random var-

iable with mean ln S0 þ ðr � r2

2
ÞT and standard deviation

r
ffiffiffiffi
T
p

. Then let

/T ðnÞ ¼
Z 1

�1
ein ln ST qT ðln ST Þd ln ST ð6Þ

be the characteristic function (or Fourier transform) of this

density. Under these conditions the Black–Scholes–Merton

price of a CALL at the initial time t ¼ 0, as expressed in

Theorem 1 has an equivalent representation in the form1
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C0ðln KÞ ¼ e�a ln K

p

Z 1

0

e�it ln K

� e�rT /T ðt� ðaþ 1ÞiÞ
a2 þ a� t2 þ ið2aþ 1Þt dt; ð7Þ

where

/T ðt� ðaþ 1ÞiÞ ¼ eiðt�ðaþ1ÞiÞðln S0þrT�1
2r

2T Þ�1
2ðt�ðaþ1ÞiÞ2r2T : ð8Þ
Proposition 4. [Carr, Madan FFT representation] Given the

definition of the discrete Fourier transform

xðkÞ ¼
XN

j¼1

e�i2p
N ðj�1Þðk�1ÞxðjÞ ð9Þ

and making use of Trapezoid Rule, formula (7) can be

approximated by the following expression:

C0ðln KuÞ ’
e�a ln Ku

p

XN

j¼1

e�itjð�bþkðu�1ÞÞw0ðtjÞg; ð10Þ

where

g ¼ a
N with a as the effective upper limit of integration,

k as the regular spacing size of the log-strike space ranging:
lnðStÞ �
Nk
2
6 lnðStÞ 6 lnðStÞ þ

Nk
2

and a as the damping parameter.

Notation 5. By now, we refer to a; g; k as the Carr–Madan
recombinant parameters.

Proposition 6. Under the same hypotheses of Proposition 4
and making use of Simpson’s Rule, the following alternative
expression for Eq. (10) holds

C0ðln KuÞ ’
e�a ln Ku

p

XN

j¼1

e�ikgðj�1Þðu�1Þeibtjw0ðtjÞ

� g
3
ð3þ ð�1Þj � dj�1Þ; ð11Þ

where d is the Kronecker Delta Function.

A FFT algorithm, as specified in Section (5), applies on
(10) and (11) formulas.
4. Affine models via Fourier transform

The Fourier transform method used to derive the Black–
Scholes–Merton FT pricing formula is now specified in
more detail for the basic AJD models (i.e. Merton (1976)
and Heston (1993) models). Several space transformations
are used. Note that the pricing formula of the type a là
Black–Scholes also appear in Geman et al. (1995) in rela-
tion to the choice of the numeraire tecnique.

4.1. The Merton model

The Merton model can be described with the following
SDE:

dSt ¼ ½r � kl�St dt þ
ffiffiffi
v
p

St dW t þ StJ t dqt; ð12Þ
where

– ðqtÞtP0 is a standard Poisson process with intensity kdt,
that isPrðdqt ¼ 1Þ ¼ kdt and Prðdqt ¼ 0Þ ¼ 1� kdt.
dqðtÞ is not correlated with J t and dW tðW tÞtP0: is a Stan-
dard Brownian Motion.

– J t is the percentage jump size for the process ðStÞtP0,
with probability distribution:

J t � LogNðl; ð1þ lÞðer2 � 1ÞÞ ð13Þ
– r is the instantaneous risk free rate at time t (constant).
– v is the variance of the process ðStÞtP0.
Theorem 7. The risk-neutral partial differential equation for

the replicating portfolio has the form

�rf þ of
oS

S½r � kl� þ of
ot
þ 1

2

o2f

oS2
½vS2�

� �
þ kE f ½ðJ þ 1ÞS; t� � f ½S; t�½ �
¼ 0 ð14Þ

also known as jump diffusion – Merton PDE.
4.1.1. PDE specification for the pricing of a Call option:
derivation of Cauchy problem

Given the partial differential equation (14), the Cauchy
problem – when f is exactly the price of a Call option C

– is defined by PDE (14) specified to describe the Call price
(15) and by its limit condition, that is, the pay-off value of
the Call at expiration time T (a):
�rC þ oC
oS

rS þ oC
ot
þ 1

2

o2C

oS2
½vS2�

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusive component

þ

þ kEJ C½ðJ þ 1ÞS; t� � C½S; t�½ � � oC
oS

kSl|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pure Jump component

¼ 0;

ð15Þ

CðS; t ¼ T Þ ¼Max½0; S � K�; ðaÞ
where CðS; t; T Þ is the CALL option price at time t.

4.1.2. The logarithmic version of Cauchy problem

The logarithmic version of Eq. (15) assumes the form
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oC
ot
þ 1

2

o2C
ox2
½v�

� �
� rC þ oC

ox
r � 1

2
v

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusive component

ð16Þ

þ kE C½xþ lnðJ þ 1Þ; t� � C½x; t�f g � oC
ox

kl|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pure Jump component

¼ 0;

Cðx; t ¼ T Þ ¼Max½0; exT � K�: ðaÞ
4.1.3. The shift in a pricing environment a-la Black–Scholes–

Merton

Now the Cauchy problem (16) is specified in the classic
Black–Scholes–Merton form with respective limit condi-
tions, that is

CtðS; t; T Þ ¼ StP 1ðS; v; t; T Þ � Ke�rðT�tÞP 2ðS; v; t; T Þ
or

Cðx; tÞ ¼ exP 1ðx; tÞ � Ke�rðT�tÞP 2ðx; tÞ
ð17Þ

oP 1

ot
þ1

2
v
o2P 1

ox2
þ rþ1

2
v

� �
oP 1

ox|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusive component

þ

þkE½½ðJ þ1ÞP 1½xþ lnðJ þ1Þ; t��P 1ðx; tÞ��kl
oP 1

ox
�klP 1ðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pure Jump component

¼ 0;

ð18Þ
P 1ðx; T Þ ¼ 1ðxT Pln½K�Þ: ðaÞ

oP 2

ot
þ 1

2
v

o2P 2

ox2

� �
þ r � 1

2
v

� �
oP 2

ox|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusive component

þ kE½½P 2½xþ lnðJ þ 1Þ; t� � P 2ðx; tÞ�� � kl
oP 2

ox|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pure Jump component

¼ 0; ð19Þ

P 2ðx; T Þ ¼ 1ðxT Pln½K�Þ: ðbÞ

Now, using the general Feyman–Kac formula for Levy
processes (see Chan (1999)), a useful characterization of
the P k’s probability measures at a generic time s is given.
In this case, for k ¼ 1; 2, Feyman–Kac theorem is specified
as follows:

P kðx; tÞ ¼ P k½xT P ln½K�jxt�: ð20Þ
4.1.4. The shift in Fourier space

The Cauchy Problem identified in (18), (19) is now
shifted in a Fourier space, i.e. it is rearranged to be func-
tionally dependent from the conditionally characteristic
function of P k’s. It is known that

P kðxtÞ ¼ P k½xT P ln½K�jxt�

¼ 1

2p

Z 1

�1

e�in ln½K�

in
f
�

kðxT ; njxtÞdn ð21Þ
so the following shifted PDE, with respective limit condi-
tions, are derived

�klf
�

1 þ
of
�

1

ot
þ 1

2
v
o2f
�

1

ox2
þ r � klþ 1

2
v

� �
of
�

1

ox

þ kE ð1þ JÞf
�½J �

1 � f
�

1

� 	
¼ 0; ð22Þ

f
�

1ðxT ; nÞ ¼ ein½xT �; ðaÞ

of
�

2

ot
þ 1

2
v
o

2f
�

2

ox2
þ r � kl� 1

2
v

� �
of
�

2

ox
þ kE f

�½J �
2 � f

�
2

� 	
¼ 0; ð23Þ

f
�

2ðxT ; nÞ ¼ ein½xT �: ðbÞ
In order to get an explicit solution of Cauchy problem,

note that a temporal shift in Fourier space is needed.

4.1.5. Specification of Cauchy problem as an ODEs system

Let us guess that the solution f
�

k of Cauchy problem
(22), (23), takes the following form for k ¼ 1; 2:

f
�

kðxs¼0; njxsÞ ¼ eCðkÞs þinxs : ð24Þ
It is easy to note that (24) and time shifted (22), (23) imply
that, for s ¼ 0, CðkÞs¼0 ¼ 0. By making a wise use of the (24)
form, we obtain

oCð1Þt

os
¼ �klðinþ 1Þ þ 1

2
vinðnþ 1Þ þ rin

þ k e
r2

2 ðinþ1Þð1þ lÞðinþ1Þ � 1
h i

; ð25Þ

Cð1Þs¼0 ¼ 0: ðaÞ
oCð2Þs

os
¼ 1

2
vinðin� 1Þ þ rin� klin

þ k e
r2

2 inðin�1Þð1þ lÞin � 1
h i

; ð26Þ

Cð2Þs¼0 ¼ 0: ðbÞ
4.1.6. The Cauchy Problem solution
By solving the highlighted Cauchy problems, we get

Cð1Þs ¼ rins� kl½inþ 1�sþ 1

2
v½inðinþ 1Þ�sþ

þ kse
r2

2 ðinþ1Þð1þ lÞðinþ1Þ � ks; ð27Þ

Cð2Þs ¼
1

2
vinsðin� 1Þ þ rins� klins

þ kse
r2

2 inðin�1Þð1þ lÞin � ks: ð28Þ

By sticking in (24) the highlighted values for Cð1Þs , Cð2Þs - gi-
ven by (27), (28) – and then by using the resulting value of
(24) in (21), we get the analytical formula for probability
functions P k that, adopted in expression (17), gives back
the Call option price searched.
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In the analyzed framework the following proposition
holds:

Proposition 8. There exists the following equivalent repre-

sentation for the formula given in (21), i.e.

P k½xs¼0 P ln½K�jxs�

¼ 1

2
þ 1

p

Z 1

0

R
e�in ln½K�

in
f
�

kðxs¼0; njxsÞ
� �

dn: ð29Þ

Running Merton model requires specific routines for the
quadrature of integral in (29).
4.2. The Heston model

This model is defined by the following system of sto-
chastic differential equations (SDE):

dSt ¼ lSt dt þ ffiffiffiffi
vt
p

St dzð1Þt ; ð30Þ
dvt ¼ j½h� vt�dt þ r

ffiffiffiffi
vt
p

dzð2Þt ; ð31Þ

where

– (30) is the SDE that describes the spot price dynamics,
– ðStÞtP0 is the spot price process,
– l is the return log-rate,
– ðvtÞtP0 is the variance process,

– ðzð1Þt ÞtP0 is a standard Wiener process,
– (31) is the SDE that describes the dynamics of the vari-

ance process vt,
– j; h; r are constant parameters of SDE, (31),
– ðzð2Þt ÞtP0, is a standard Wiener process,
– q1;2 is the correlation coefficient between zð1Þt and zð2Þt ,

that is dzð1Þt � dzð2Þt ¼ q1;2 dt.

In the following, the notation will be simplified and the
subscript t will be omitted. So, from now: dzðiÞt ¼ dzi.

Theorem 9. The risk – neutral partial differential equation

for the replicating portfolio has the form

�rf þ of
ot
þ of

oS
rS þ 1

2

o
2f

oS2
vS2 þ 1

2

o
2f

ov2
r2v

þ of
oSov

Srq1;2vþ of
ov
½jðh� vÞ � k�ðS; v; tÞ�

¼ 0 ð32Þ

also known as Stochastic Volatility – Heston PDE. k�ðS; v; tÞ
is also known as the premium for variance risk.
4.2.1. Specification of the PDE for the pricing of a Call

option: derivation of Cauchy problem

Given the partial differential equation (32), the Cauchy
problem – when f is exactly the price of a Call option C

– is defined by PDE (32) specified to describe the Call price
(33) and by its limit condition, that is, the pay-off value of
the Call at expiration time T (a):
�rC þ oC
ot
þ oC

oS
rS þ 1

2

o2C

oS2
vS2 þ 1

2

o2C
ov2

r2v

þ oC
oSov

Srq1;2vþ oC
ov
½jðh� vÞ � k�ðS; v; tÞ�

¼ 0; ð33Þ
CðSt; vt; t ¼ T Þ ¼ maxð0; ST � KÞ; ðaÞ
where CtðS; v; t; T Þ is the CALL price at time t.

4.2.2. The shift of Cauchy problem in a forward space

Eq. (32), is transformed now in its equivalent version in
terms of forward prices.

So defined the forward price F t;T ¼: erðT�tÞSt, this gives:

� oeC
os
þ r

oeC
ox
þ 1

2

o2 eC
ov2
ðr2vÞ þ o2 eC

oxov
ðvrq1;2Þ

þ 1

2

o2 eC
ox2
� oeC

ox

 !
vþ oeC

ov
½jðh� vÞ � ~kv� ¼ 0; ð34Þ

eCðxs; vs; s ¼ 0Þ ¼ maxð0; exs¼0 � KÞ: ðaÞ
4.2.3. The shift in a pricing environment a-la Black–Scholes–

Merton

Now the Cauchy problem (34) is specified in the classic
Black–Scholes–Merton form, with respective limit condi-
tions that is

CtðS; v; t; T Þ ¼ StP 1ðS; v; t; T Þ � Ke�rðT�tÞP 2ðS; v; t; T Þ
or Ctðx; v; sÞ ¼ StP 1ðx; v; sÞ � Ke�rsP 2ðx; v; sÞ

ð35Þ

where P 1; P 2 are probability measures.

� oP j

os
þ oP j

ox
ðr þ cjvÞ þ

1

2

o2P j

ov2
ðr2vÞ þ o2P j

oxov
ðvrq1;2Þ

þ 1

2

o
2P j

ox2
vþ oP j

ov
ða� bjvÞ ¼ 0; ð36Þ

P jðxs; vs; s ¼ 0Þ ¼ 1ðxsPln KÞ: ðaÞ

Now, using the Feyman–Kac formula, a useful charac-
terization of the P j’s probability measures at a generic time
s is given. In this case, Feyman–Kac theorem is specified as
follows:

P jðxs; vs; sÞ ¼ P jðxs¼0 P ln K j xs; vsÞ: ð37Þ
4.2.4. The Shift in Fourier Space

The Cauchy Problem identified in (36) is now shifted in
a Fourier space, i.e. it is rearranged to be functionally
dependent from the conditionally characteristic function
of P j’s.

P jðxs¼0 P ln K j xs; vsÞ ¼
1

2p

Z 1

�1

e�in ln K

in
~fjðxs; vs; s

¼ 0; n j xs; vsÞdn ð38Þ

so, the following shifted PDE, with respective limit condi-
tions, are derived
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o~fj

os
þ o~fj

ox
ðr þ cjvÞ þ

1

2

o
2 ~fj

ov2
ðr2vÞ þ o

2 ~fj

ovox
ðvrq1;2Þ

þ o2 ~fj

ox2
vþ o~fj

ov
½a� bjv� ¼ 0; ð39Þ

~fjðxs; vs; s ¼ 0; nÞ ¼ einxs¼0 : ðaÞ
4.2.5. The specification of Cauchy Problem as an ODEs

system

Let us guess that the solution ~fj of Cauchy problem (39),
takes the form

~fjðxs; vs; s ¼ 0; njxs; vsÞ ¼ e CðjÞs þDðjÞs vtþinxsð Þ: ð40Þ
It is easy to note that (40) and (a) imply that, for s ¼ 0,
CðjÞ0 ¼ 0 and DðjÞ0 ¼ 0. By making a wise use of the (40)
form, we obtain

oCj

os
¼ rinþ aDj; ð41Þ

oDj

os
¼ cjinþ

1

2
D2

j r
2 þ inDjrq1;2 �

1

2
n2 � bjDj; ð42Þ

CðjÞ0 ¼ 0; ðaÞ
DðjÞ0 ¼ 0; ðbÞ

that is, a system of ordinary differential equations (ODE)
with respective final conditions.

4.2.6. The Cauchy Problem solution

By solving the highlighted Cauchy problems we get

DðjÞs ¼ �
2a2

r2

1� eds

1� geds
; ð43Þ

CðjÞs ¼ rins� 2a
r2

a2sþ ln
geds � 1

g � 1

� �
; ð44Þ

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1;2rni� bjÞ2 � r2ð2cjni� n2Þ

q
; ð45Þ

a1 ¼
q1;2rni� bj þ d

2
; a2 ¼

q1;2rni� bj � d

2
; ð46Þ

By sticking in (40) the highlighted values for CðjÞs , DðjÞs – gi-
ven by (43), (44) – and then by using the resulting value of
(40) in (38), we get the analytical formula for probability
functions P k that, adopted in expression (35), gives back
the Call option price searched.

In the analyzed framework the following proposition
holds:

Proposition 10. There exists the following equivalent repre-

sentation for the formula given in (38), i.e.
P jðxs¼0 P ln K j xs; vsÞ

¼ 1

2
þ 1

p

Z 1

0

R
e�in ln K ~fjðxs; vs; s ¼ 0; n j xs; vsÞ

in

" #
dn:

ð47Þ
Running Heston model requires specific routines for the
quadrature of integral in (47).

Proposition 11. Empirical Tests show that the below equiv-

alent formula for CðjÞs improves pricing stability:

Cj ¼ rins� a
r2

q1;2rni� bj þ d

 �

s� a
r2

2

� ln 1�
ð1� e�dsÞðq1;2rni� bj þ dÞ

2d

� �
: ð48Þ

Proposition 12. Empirical Tests show that the below equiva-

lent formula for DðjÞs improves pricing stability:

Dj ¼
ð2cjni� n2Þð1� e�dsÞ

2d � ðq1;2rni� bj þ dÞð1� e�dsÞ ð49Þ

Note that this formula is easily extended to more general
AJD models (see Bakshi et al. (1997), Bakshi and Cao
(2004)).
5. Computing the Greeks: The homogeneity approach

A similar approach for greeks has been used by Reiss
and Wystup (2001). The Greeks in Merton model:

Notation 13. From now, this simplified notation is also
used

~fj ¼
: ~fjðxs; s ¼ 0; n j xsÞ: ð50Þ

Proposition 14. The following identities hold:

o

oSt

~fjðxs; s ¼ 0; n j xsÞ ¼ ~fjðxs; s ¼ 0; njxsÞ � in
1

St
; ð51Þ

o2

oS2
t

~fjðxs; s ¼ 0; njxsÞ

 �

¼ 1

S2
t

inðin� 1Þ~fjðxs; s ¼ 0; njxsÞ:

ð52Þ

Proposition 15. The following identities hold:

o

oK
e�in ln K

in

� �
¼ � 1

K
e�in ln K ; ð53Þ

o2

oK2

e�in ln K

in

� �
¼ 1

K2
e�in ln Kðinþ 1Þ: ð54Þ

Proposition 16. The following identities hold:

oP j

oSt
¼ 1

pSt

Z 1

0

R½e�in ln Kð~fjðxs; s ¼ 0; njxsÞÞ�dn; ð55Þ

o
2P j

oS2
t

¼ 1

pS2
t

Z 1

0

R½e�in ln Kððinþ 1Þ~fjðxs; s ¼ 0; njxsÞÞ�dn;

ð56Þ
oP j

oK
¼ � 1

pK

Z 1

0

R½ðe�in ln K ~fjðxs; s ¼ 0; n j xsÞÞ �dn; ð57Þ

o
2P j

oK2
¼ 1

pK2

Z 1

0

R½e�in ln Kðinþ 1Þ ~fjðxs; s ¼ 0; n j xsÞ�dn:

ð58Þ
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Proposition 17. The following identities hold:

oP 1

ovt
¼ 1

p

Z 1

0

R
e�in ln K

in
ðeCð1Þs þinxs � 1

2
inðinþ 1ÞsÞ

� �
dn; ð59Þ

oP 2

ovt
¼ 1

p

Z 1

0

R
e�in ln K

in
ðeCð2Þs þinxs � 1

2
inðin� 1ÞsÞ

� �
dn: ð60Þ

Proposition 18. The following identities hold:

oP 1

ot
¼ 1

p

Z 1

0

R
e�in ln K

in
eCð1Þs þinxs �rinþ kl½inþ 1�ð

�
� 1

2
v½inðinþ 1Þ��ke

r2

2 ðinþ1Þð1þ lÞðinþ1Þ þ k
	i

dn;

ð61Þ
oP 2

ot
¼ 1

p

Z 1

0

R
e�in ln K

in
eCð2Þs þinxs � 1

2
vinðin� 1Þ � rin

��
þklin� ke

r2

2 inðin�1Þð1þ lÞin þ k
	i

dn: ð62Þ

Proposition 19. The Delta of a CALL option is

DC ¼ P 1: ð63Þ

Proposition 20. The Gamma of a CALL option is

CC ¼
oP 1

oSt
ð64Þ

(for oP 1

oSt
, cfr. expression (55)).

Proposition 21. The Vega of a CALL option is

VC ¼ St
oP 1

ovt
� Ke�rs oP 2

ovt
ð65Þ

(for
oP j

ovt
, cfr. expression (59)).

Corollary 22. The second order cross derivative respect to vt

and St is

o
2Ct

oStovt
¼ oP 1

ovt
: ð66Þ

Proposition 23. The Theta of a CALL option is

HC ¼ St
oP 1

ot
� K re�rðT�tÞP 2 þ e�rðT�tÞ oP 2

ot

� �
ð67Þ

(for
oP j

ot , cfr. expression (61), (62)).

Proposition 24. The Rho of a CALL option is

qC ¼ Kse�rsP 2: ð68Þ
The Greeks in Heston model: Very similar in the analytic
form to those derived for Merton model.
2 For further details, see Hunter and Nikolov (2000).
3 This criterion is related to the fact that the pricing of the Call price

under the Black–Scholes–Merton model via Fourier transform adopting
the Gauss–Lobatto quadrature algorithm gives back always exactly the
Call price computed via standard Black–Scholes–Merton approach.
6. Numerical procedures and results

The models tested are the canonical ones, i.e. Heston
(1993), Merton (1976), Bakshi et al. (1997).
6.1. Pricing

Three different algorithms are used to have a numerical
approximation of the integrands involved in the pricing
formulas:

OLD FT-Q: An High Order (up to 8th) Newton–Cotes
quadrature algorithm.

NEW FT-Q: An Adaptive and Iterative Gauss–Lobatto
quadrature algorithm.

Definition 25. Gauss–Lobatto quadrature scheme

Let is define as Gauss–Lobatto quadrature scheme a
Gaussian quadrature with weighting function W ðxÞ ¼ 1, in
which the endpoints of the interval ½�1; 1� are included in a
total of n abscissas, giving r ¼ n� 2 free abscissas.
Abscissas are symmetrical about the origin, and the general
formula is

Z 1

�1

f ðxÞdx ¼ w1f ð�1Þ þ wnf ð1Þ þ
Xn�1

i¼2

wif ðxiÞ;

where

wi ¼
2

NðN � 1Þ½P N�1ðxiÞ�2

and

w1 ¼ wN ¼
2

NðN � 1Þ

The free abscissas xi for i ¼ 2; . . . ; n� 1 are the roots of
the polynomial P 0n�1ðxÞ where P ðxÞ is a Legendre
polynomial.2

FFT: A fast Fourier transform algorithm (Cooley–
Tukey algorithm mixed with prime factor and split-radix
algorithms).

Different Valuation Criteria are defined to assess the
algorithms performance with respect to the pricing
formulas.

Stability: The algorithm is defined stable if and only if it
‘‘closes” the quadrature scheme, giving a ‘‘reasonable”

result different from a NaN value, after the pricing for-
mula has been spanned on a vast area of the parameters
set.

Accuracy: The algorithm is defined accurate with respect
to the results of the NEW FT-Q algorithm.3

Speed: The algorithm is defined fast with respect to the
results of the FFT algorithm on a set of 4100 prices along
the strike, with fixed pricing formulas parameters.

The FFT algorithm is implemented using the following
recombinant parameters: a ¼ 1:45 (the damping parame-
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ter) and the standard values as they appear in Carr and
Madan (1999) for the discretization grids (log-strike and
characteristic function). When an equivalent pricing
formula is available (see Propositions 11, 12), the test are
performed again to assess the performance gains. For each
run the following ‘‘market” parameters are used: S0 ¼ 98;
K ¼ 100; s ¼ 0:5.–PRICING PERFORMANCES: Tables
for Heston model

With OR we are denoting the use of models original
formulas
With AL we are denoting the use of models alternative
formulas
NC = Not Computed (due to instability problems)
Heston model via OLD FT-Q

CPU times for pricing (sec.)
Param.
 hv
 jv
 rv
 k
 q
 v
 OR
 AL

Case I
 0.45
 2
 0.1
 0.5
 0
 0.2
 42.4
 43.0

Case II
 0.8
 1
 0.4
 1.6
 0.7
 0.5
 44.7
 42.1

Case III
 0.01
 3
 0.2
 �1
 �0.7
 0.05
 NC
 56.6

Case IV
 0.2
 0.3
 0.75
 0
 �0.1
 0.2
 52.0
 48.5

Case V
 0.3
 2.2
 0.15
 �2
 1
 0.3
 NC
 NC

Case VI
 0.8
 1.3
 0.01
 3
 �1
 0.7
 42.6
 41.1
Heston model via new FT-Q

CPU times for pricing (sec.)
Param.
 hv
 jv
 rv
 k
 q
 v
 OR
 AL

Case I
 0.45
 2
 0.1
 0.5
 0
 0.2
 41.2
 39.6

Case II
 0.8
 1
 0.4
 1.6
 0.7
 0.5
 45.8
 51.2

Case III
 0.01
 3
 0.2
 �1
 �0.7
 0.05
 58.1
 56.6

Case IV
 0.2
 0.3
 0.75
 0
 �0.1
 0.2
 46.8
 42.7

Case V
 0.3
 2.2
 0.15
 �2
 1
 0.3
 64.0
 53.9

Case VI
 0.8
 1.3
 0.01
 3
 �1
 0.7
 43.5
 44.8
Heston model via FFT

CPU times for pricing (sec.)
Param.
 hv
 jv
 rv
 k
 q
 v
 OR
 AL

Case I
 0.45
 2
 0.1
 0.5
 0
 0.2
 0.92
 0.94

Case II
 0.8
 1
 0.4
 1.6
 0.7
 0.5
 1.49
 0.96

Case III
 0.01
 3
 0.2
 �1
 �0.7
 0.05
 1.9
 1.88

Case IV
 0.2
 0.3
 0.75
 0
 �0.1
 0.2
 1.84
 1.53

Case V
 0.3
 2.2
 0.15
 �2
 1
 0.3
 3.07
 2.9

Case VI
 0.8
 1.3
 0.01
 3
 �1
 0.7
 0.9
 1.0
–PRICING PERFORMANCES: Tables for Merton

model.

NC = Not computed (due to instability problems).

Merton model via OLD FT-Q

CPU times for pricing
Param.
 rj
 kj
 lj
 v
 CPU times (sec.)

Case I
 0.1
 0.5
 0
 0.2
 73.7

Case II
 0.4
 1.6
 0.2
 0.5
 78.6
Table (continued)
Case III
 0.2
 2
 0.5
 0.05
 NC

Case IV
 0.75
 0
 0.9
 0.2
 NC

Case V
 0.15
 0.02
 1.5
 0.3
 62.5

Case VI
 0.01
 0.9
 2
 0.7
 80.0
Merton model via NEW FT-Q

CPU times for pricing
Param.
 rj
 kj
 lj
 v
 CPU times (sec.)

Case I
 0.1
 0.5
 0
 0.2
 69.3

Case II
 0.4
 1.6
 0.2
 0.5
 72.2

Case III
 0.2
 2
 0.5
 0.05
 65.2

Case IV
 0.75
 0
 0.9
 0.2
 74.4

Case V
 0.15
 0.02
 1.5
 0.3
 66.1

Case VI
 0.01
 0.09
 2
 0.7
 68.3
Merton model via FFT

CPU times for pricing
Param.
 rj
 kj
 lj
 v
 CPU times (sec.)

Case I
 0.1
 0.5
 0
 0.2
 2.45

Case II
 0.4
 1.6
 0.2
 0.5
 3.90

Case III
 0.2
 2
 0.5
 0.05
 3.28

Case IV
 0.75
 0
 0.9
 0.2
 1.8

Case V
 0.15
 0.02
 1.5
 0.3
 1.1

Case VI
 0.01
 0.09
 2
 0.7
 3.56
Not surprisingly, the FFT speed performance, on a set of
4100 prices along the strike, are hardly comparable with the
other algorithms performance, as FFT is up to 40 times
faster the other quadrature schemes. OLD FT-Q and
NEW FT-Q speed differences are negligible. In terms of
brute force, the equivalent representations for the formulas
does not seem to improve speed. Clearly, the FFT accuracy
relies heavily on the number of interpolation points for the
discrete Fourier transform and the choice of computing
4100 prices is the best one (following Carr–Madan results)
in order to compute accurate prices; this implies that, in an
extreme scenario, the computation of a single price in the
most accurate way with the FFT algorithm will require
exactly the computational time required by thousand of
prices, since a computational gain can be obtained only at
the cost of a decreasing pricing accuracy. So it is understood
that, even if in the speed test the FT-Q schemes are slowed
down by the use of iterative loops (although vectorized) in
the computations of thousand of prices, they can handle with
a comparable speed and in a more accurate way the compu-
tations of less prices (for instance, in the order of hundreds),
with respect to the lack of accuracy, in terms of interpolation
points, shown in these situations by the FFT algorithm.

OLD FT-Q algorithm has serious problems of stability
in extended areas of the parameters set of clear financial
meaning (for example, long expiry time or high volatility).
It is known that the FFT algorithm needs alternative pric-
ing formula to handle values for Strikes far away from the
Spot Price level, so an arbitrary choice of the ‘‘sensible”

level of Strike that governs the choice of the right formula
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is inherent in the FFT approach and mines the stability of
the algorithm. Only the NEW FT-Q algorithm satisfies the
stability criterion in a proper way.

Moreover, numerical results show that the NEW FT-Q
is the only algorithm that improves considerably its stabil-
ity performance when an equivalent pricing formula is
used. Clearly, to assess algorithms accuracy, one has to
choose some ‘‘reasonable” values for the recombinant
parameters in the FFT approach. In fact, the FFT solution
identifies a peculiar choice of the recombinant parameters
that cannot be applied tout – court to all the models. More-
over, either the OLD FT-Q or NEW FT-Q, when spanned
on the parameters set, give the same prices with a precision
of 10�3, so the FFT accuracy has to be valued with respect
to the results given by the FT approaches (see also footnote
3). An accuracy test for the FFT algorithm compared with
the FT approaches is still under progress, so a definitive
answer cannot be given. Keeping in mind this fact, one
can notice that the use of a different value (considered as
optimal,4 but not confirmed in other studies) for the damp-
ing parameter from the original form of Carr–Madan is
needed here in order to maintain a reasonable accuracy.
Since this parameter depends heavily from the model struc-
ture, a unique choice for a wide class of models like AJD
looks somewhat suspicious. Moreover, the damping
parameter effect is strictly related with the choice of the dis-
cretization grid points,5 so an optimal assessment is really a
tough task far to be solved. Obviously, an accurate calibra-
tion of the damping parameter for each model analyzed
using the accuracy criterion (for a fixed choice of the dis-
cretization grids) will answer to this doubt, but at the pres-
ent time, this ‘‘easy use” of given values casts at least a
shadow on the accuracy issue. Eventually, we can consider
that this problem, uncomfortable for an operational use,
does not exist in the FT approach that can be really used
without worries as a black box.

We notice that a recent work (Chourdakis, 2004)
enhances the Carr–Madan procedure in terms of the choice
of the discretization grid points but the accuracy issue
remains actually an open problem.

6.2. Calibration

6.2.1. Algorithms

The standard calibration problem (SSE6) for AJD mod-
els is performed, i.e.

min
v;U

Xn

j¼1

½CMarketðSt;Kj; sÞ � CAJDðSt;Kj; s; v;UÞ�2; ð69Þ

where U is the set of parameter that characterizes the se-
lected model, St;Kj; s can be spotted on the market, and
v is the initial variance level.
4 See Schoutens et al. (2004).
5 See Lee (2004).
6 Sum of Square Errors.
An unconstrained non-linear optimization algorithm
based on the Reflective Newton Method is used for the cal-
ibration, since it is preferred to impose implicit parameters
constraints for reasons of numerical stability. Each itera-
tion involves the approximate solution of a large linear sys-
tem using the method of preconditioned conjugate
gradients (PCG).7

6.2.2. Empirical Performances

It must be stressed that stability in pricing is crucial to
optimize either stability or speed performance in calibra-
tion. In fact, the optimization algorithm tries thousand of
parameters combinations in its search for the minimum;
by doing so even a little instability in a limited area of
the parameters set can affect seriously the speed perfor-
mance since the pricing algorithm is slowed down by
numerical instability. This hypothesis is confirmed by the
calibration results.

The tests are structured in the following way: we do
not use real market prices for the calibration, as an empir-
ical analysis of an option market is beyond the scope of
this work. Theoretical prices are used, that are directly
computed using the models formulas with the same
parameters vectors used in the previous tests, in order
to preserve the same initial conditions. Then a model cal-
ibration is done from a random starting point (resampled
for each run) using the three different approaches. We
take only care of the computational performances since
the calibration accuracy cannot be a subject of a reliable
comparative test without considering the ‘‘seed choice”
problem, i.e. the correct choice of a starting point and
having a complete test of the accuracy of the FFT
algorithm.

The following tables show the results:
CALIBRATION PERFORMANCES: Tables for Hes-

ton model
With OR we are denoting the use of models original

formulas
With EQ we are denoting the use of models equivalent

formulas
The calibration target vectors are
Parameters
7 See Coleman a
hv
nd Li (19
jv
94).
rv
 k
 q
 v
Run 1
 0.8
 1.3
 0.01
 3
 �1
 0.7

Run 2
 0.45
 2
 0.1
 0.5
 0
 0.2

Run 3
 0.01
 3
 0.2
 �1
 �0.7
 0.05

Run 4
 0.2
 0.3
 0.75
 0
 �0.1
 0.2

Run 5
 0.3
 2.2
 0.15
 �2
 1
 0.3

Run 6
 0.8
 1.3
 0.01
 3
 �1
 0.7
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Where a* appears, the mean result is not considering
some calibration tasks not performed for reasons of
numerical instability.

Mean performances

Heston model or

CPU times for calibration (sec.)
Prices
 OLD FT-Q
 New FT-Q
 FFT
6
 397.8*
 55.3
 6.35

8
 437.2*
 52.3
 5.97

10
 547.0
 55.7
 6.51

14
 581.5
 56.7
 7.05

16
 506.4*
 60.1
 7.22

18
 510.1*
 58.1
 6.98
HESTON model EQ

CPU times for calibration (sec.)
PRICES
 OLD FT-Q
 NEW FT-Q
 FFT
6
 382.0*
 32.5
 6.34

8
 459.05
 32.8
 6.17

10
 400.8*
 27.5
 6.52

14
 480.2
 30.9
 6.99

16
 489.2
 33.8
 6.84

18
 436.7*
 36.8
 6.93
–CALIBRATION PERFORMANCES: Tables for Mer-
ton model

The calibration target vectors are
Parameters
 rj
 kj
 lj
 v
Run 1
 0.1
 0.5
 0
 0.2

Run 2
 0.4
 1.6
 0.2
 0.5

Run 3
 0.2
 2
 0.5
 0.05

Run 4
 0.75
 0
 0.9
 0.2

Run 5
 0.15
 0.02
 1.5
 0.3

Run 6
 0.01
 0.9
 2
 0.7
Where a * appears, the mean result is not considering
some calibration tasks not performed for reasons of
numerical instability

MEAN PERFORMANCES

Merton model via NEW FT-Q

CPU times for calibration (sec.)
Prices
 OLD FT-Q
 NEW FT-Q
 FFT
4
 623.2*
 66.5
 9.08

6
 605.7
 64.2
 9.02

8
 625.8
 68.1
 8.89
10
 636.7
 74.7
 9.54

12
 658.1
 73.3
 9.53

14
 660.4
 77.2
 9.67
Clearly, the optimization performance of the FFT

approach are not comparable with FT-Q speed. Obviously,
one must consider the accuracy problem, since the cali-
brated parameters that come out from the FFT approach
depend heavily from the arbitrary choice of the recombi-
nant parameters, but the implications of this problem have
just been considered in the pricing section. The most inter-
esting fact here is the sensible performance gain (up to 10
times) when we switch from a Newton–Cotes to a
Gauss–Lobatto quadrature algorithm: since the speed per-
formance of the two algorithms during the pricing can be
considered exactly the same, the speed gain in calibration
results has to come out from the improved stability of
the Gauss–Lobatto scheme.

At this time of the analysis, it must be verified if, by
implementing the equivalent pricing formulas that avoid
the major numerical flaws, it is possible to considerably
improve the calibration performance. This intuition has
been proved correct since this approach has performed
far better than expected. The table results are clear: the
FFT performance are not affected by the use of the alterna-
tive pricing formula, or the influence can be considered
negligible. The OLD FT-Q scheme seems to benefit in some
way of the improved stability, but the interesting fact is the
performance boost showed by the NEW FT-Q scheme: in
the better conditions, the Gauss–Lobatto scheme applied
on the alternative formulas is only three times slower than
FFT speed performances.

In other words, the calibration times of a classic, revis-
ited, quadrature scheme for the canonical Inverse Levy
Formula (that avoids the use of recombinant parameters)
are closer than ever to the FFT calibration times.

Models extensions: Outlines: The choice of Bakshi–
Cao–Chen (Bakshi et al., 1997) model has followed the
idea of a natural evolution for Heston model. In fact, this
model, without modifying the Heston model structure,
allows a stochastic structure of CIR type (i.e. square root)
for the free risk interest rate and the presence of jumps in
a Merton fashion. Moreover, the BCC model allows a
wide generalization at a minimum parameters cost and
the linear additive structure of its pricing formula with
respect to the stochastic interest rate and jump compo-
nents, is easy to implement from a numerical point of
view.

For BCC model, we have some figures on speed and sta-
bility in pricing and hedging:
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Pricing speed (sec.)
 BCC 97
FFT
 1.26

OLD FT-Q
 85.4

NEW FT-Q
 86.2
Calibration speed (sec.)
 BCC 97
FFT
 18.32

OLD FT-Q
 962.0

NEW FT-Q
 93.2
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In terms of stability, the BCC pricing formula has not

many problems and gives accurate prices when spanned
on a vast area of the parameters set; a reasonable explana-
tion is that the increased number of parameters and the
presence of two different sources of price volatility gives
more flexibility to the formula. An alternative representa-
tion for the pricing formula that avoids the computation
of bad behaved quantities (as logarithms and fractions)
can be easily found and it is shown that this alternative rep-
resentation improves the stability in pricing and speeds up
the calibration procedure. A rigorous battery of tests per-
formed as for Heston and Merton model is still under
progress.
6.2.3. Computing Greeks with NEW FT-Q

The presence of closed analytical formula for the
Greeks and a stable and reliable approach to compute
bad behaved integrands makes possible to study exten-
sively the Greeks Behavior on the parameters set. The
NEW FT-Q quadrature scheme is useful to avoid other
numerical methods to compute Greeks that are computa-
tionally expensive and less accurate and it allows a ‘‘quasi
real-time” valuation of the parameters non-linear impact
on the behavior of the Greeks. In this way, the role of
the volatility process parameters and the jumps are per-
fectly quantified, and their complex relationships with
other important parameters (i.e. price of volatility risk,
correlation coefficients between processes) that become
evident only for extreme (but realistic) values for parame-
ters are fully assessed.

The problem of numerical instability, although very
reduced, obviously cannot be ignored. As it appears in
the figures below, for extreme parameters value the Greeks
show some flaws:

These Greeks (Merton Delta and Merton Gamma) have
been computed using the NEW FT-Q scheme applied to
the formulas (63), (64). For both cases the parameters used
are: K ¼ 100; s ¼ 0:5; r ¼ 0:02; kj ¼ 0:5; 1:8; lj ¼ 2:5; rj ¼
0:1; St ¼ ½0; 200�; v ¼ ½0; 1�.
The real advantage of this approach is that, even slightly
unstable, the NEW FT-Q scheme always ‘‘close” the inte-
gral, i.e. the charts shows ‘‘no hole”. In this way. the area
of instability can be easily identified and an intensity of
instability (related with the anomalous waves showed by
the Greeks) can be measured. Then, a simple interpolation
can solve the problem to obtain the true pattern of the
studied Greek.
7. Conclusions

We revisit a well-known Fourier transform method for
pricing and hedging options in affine jump diffusion mod-
els, using alternative option pricing formulas for the mod-
els and a robust Gauss–Lobatto quadrature scheme
replacing the standard Newton–Cotes algorithms previ-
ously used in literature. Extensive tests of the new method
are performed, in comparison with the classic method and
the FFT method, that is a standard tool in numerous
empirical studies. The results show an improved stability
and speed of computation of our revisited method: the
NEW FT-Q scheme is up to 10 times faster the old Fou-
rier transform quadrature scheme and, in the best condi-
tions, its speed is directly comparable to FFT speed
performances. Moreover, it must be stressed that our
method avoids the greatly underestimated problem of
the arbitrary choice of recombinant parameters in the
FFT approach and it can be easily used also for the com-
putation of a low number of option prices, a situation
that FFT cannot handle without losing in accuracy or
in speed; these properties enhance the overall accuracy
in pricing and hedging. Eventually, the NEW FT-Q
method has allowed a feasible computation and in-depth
analysis of the AJD Greeks, making possible a detailed
comparative statics study in ‘‘quasi” real time. More
research has to be done in the assessment of the recombi-
nant parameters in order to improve the accuracy of FFT
approach and in the testing of the NEW FT-Q method on
more complex models.
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